5,733 research outputs found

    Identifying causal gateways and mediators in complex spatio-temporal systems

    Get PDF
    J.R. received support by the German National Academic Foundation (Studienstiftung), a Humboldt University Postdoctoral Fellowship, and the German Federal Ministry of Science and Education (Young Investigators Group CoSy-CC2, grant no. 01LN1306A). J.F.D. thanks the Stordalen Foundation and BMBF (project GLUES) for financial support. D.H. has been funded by grant ERC-CZ CORES LL-1201 of the Czech Ministry of Education. M.P. and N.J. received funding from the Czech Science Foundation project No. P303-14-02634S and from the Czech Ministry of Education, Youth and Sports, project No. DAAD-15-30. J.H. was supported by the Czech Science Foundation project GA13-23940S and Czech Health Research Council project NV15-29835A. We thank Mary Lindsey from the National Oceanic and Atmospheric Administration for her kind help with Fig. 4e. NCEP Reanalysis data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/.Peer reviewedPublisher PD

    A common framework for learning causality

    Full text link
    [EN] Causality is a fundamental part of reasoning to model the physics of an application domain, to understand the behaviour of an agent or to identify the relationship between two entities. Causality occurs when an action is taken and may also occur when two happenings come undeniably together. The study of causal inference aims at uncovering causal dependencies among observed data and to come up with automated methods to find such dependencies. While there exist a broad range of principles and approaches involved in causal inference, in this position paper we argue that it is possible to unify different causality views under a common framework of symbolic learning.This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. Diego Aineto is partially supported by the FPU16/03184 and Sergio Jimenez by the RYC15/18009, both programs funded by the Spanish government.Onaindia De La Rivaherrera, E.; Aineto, D.; Jiménez-Celorrio, S. (2018). A common framework for learning causality. Progress in Artificial Intelligence. 7(4):351-357. https://doi.org/10.1007/s13748-018-0151-yS35135774Aineto, D., Jiménez, S., Onaindia, E.: Learning STRIPS action models with classical planning. In: International Conference on Automated Planning and Scheduling, ICAPS-18 (2018)Amir, E., Chang, A.: Learning partially observable deterministic action models. J. Artif. Intell. Res. 33, 349–402 (2008)Asai, M., Fukunaga, A.: Classical planning in deep latent space: bridging the subsymbolic–symbolic boundary. In: National Conference on Artificial Intelligence, AAAI-18 (2018)Cresswell, S.N., McCluskey, T.L., West, M.M.: Acquiring planning domain models using LOCM. Knowl. Eng. Rev. 28(02), 195–213 (2013)Ebert-Uphoff, I.: Two applications of causal discovery in climate science. In: Workshop Case Studies of Causal Discovery with Model Search (2013)Ebert-Uphoff, I., Deng, Y.: Causal discovery from spatio-temporal data with applications to climate science. In: 13th International Conference on Machine Learning and Applications, ICMLA 2014, Detroit, MI, USA, 3–6 December 2014, pp. 606–613 (2014)Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153(1–2), 49–104 (2004)Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: Causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)Heckerman, D., Meek, C., Cooper, G.: A Bayesian approach to causal discovery. In: Jain, L.C., Holmes, D.E. (eds.) Innovations in Machine Learning. Theory and Applications, Studies in Fuzziness and Soft Computing, chapter 1, pp. 1–28. Springer, Berlin (2006)Li, J., Le, T.D., Liu, L., Liu, J., Jin, Z., Sun, B.-Y., Ma, S.: From observational studies to causal rule mining. ACM TIST 7(2), 14:1–14:27 (2016)Malinsky, D., Danks, D.: Causal discovery algorithms: a practical guide. Philos. Compass 13, e12470 (2018)McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, 27–31 July 1997, Providence, Rhode Island, pp. 460–465 (1997)McCarthy, J.: Epistemological problems of artificial intelligence. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, USA, 22–25 August 1977, pp. 1038–1044 (1977)McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Mach. Intell. 4, 463–502 (1969)Pearl, J.: Reasoning with cause and effect. AI Mag. 23(1), 95–112 (2002)Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)Spirtes, C.G.P., Scheines, R.: Causation, Prediction and Search, 2nd edn. The MIT Press, Cambridge (2001)Spirtes, P., Zhang, K.: Causal discovery and inference: concepts and recent methodological advances. Appl. Inform. 3, 3 (2016)Thielscher, M.: Ramification and causality. Artif. Intell. 89(1–2), 317–364 (1997)Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)Yang, Q., Kangheng, W., Jiang, Y.: Learning action models from plan examples using weighted MAX-SAT. Artif. Intell. 171(2–3), 107–143 (2007)Zhuo, H.H., Kambhampati, S: Action-model acquisition from noisy plan traces. In: International Joint Conference on Artificial Intelligence, IJCAI-13, pp. 2444–2450. AAAI Press (2013

    Adapted K-Nearest Neighbors for Detecting Anomalies on Spatio–Temporal Traffic Flow

    Get PDF
    Outlier detection is an extensive research area, which has been intensively studied in several domains such as biological sciences, medical diagnosis, surveillance, and traffic anomaly detection. This paper explores advances in the outlier detection area by finding anomalies in spatio-temporal urban traffic flow. It proposes a new approach by considering the distribution of the flows in a given time interval. The flow distribution probability (FDP) databases are first constructed from the traffic flows by considering both spatial and temporal information. The outlier detection mechanism is then applied to the coming flow distribution probabilities, the inliers are stored to enrich the FDP databases, while the outliers are excluded from the FDP databases. Moreover, a k-nearest neighbor for distance-based outlier detection is investigated and adopted for FDP outlier detection. To validate the proposed framework, real data from Odense traffic flow case are evaluated at ten locations. The results reveal that the proposed framework is able to detect the real distribution of flow outliers. Another experiment has been carried out on Beijing data, the results show that our approach outperforms the baseline algorithms for high-urban traffic flow

    How complex climate networks complement eigen techniques for the statistical analysis of climatological data

    Full text link
    Eigen techniques such as empirical orthogonal function (EOF) or coupled pattern (CP) / maximum covariance analysis have been frequently used for detecting patterns in multivariate climatological data sets. Recently, statistical methods originating from the theory of complex networks have been employed for the very same purpose of spatio-temporal analysis. This climate network (CN) analysis is usually based on the same set of similarity matrices as is used in classical EOF or CP analysis, e.g., the correlation matrix of a single climatological field or the cross-correlation matrix between two distinct climatological fields. In this study, formal relationships as well as conceptual differences between both eigen and network approaches are derived and illustrated using exemplary global precipitation, evaporation and surface air temperature data sets. These results allow to pinpoint that CN analysis can complement classical eigen techniques and provides additional information on the higher-order structure of statistical interrelationships in climatological data. Hence, CNs are a valuable supplement to the statistical toolbox of the climatologist, particularly for making sense out of very large data sets such as those generated by satellite observations and climate model intercomparison exercises.Comment: 18 pages, 11 figure
    corecore