1,455 research outputs found

    Effects of finite strains in fully coupled 3D geomechanical simulations

    Get PDF
    Numerical modeling of geomechanical phenomena and geo-engineering problems often involves complex issues related to several variables and corresponding coupling effects. Under certain circumstances, both soil and rock may experience a nonlinear material response caused by, for example, plastic, viscous, or damage behavior or even a nonlinear geometric response due to large deformations or displacements of the solid. Furthermore, the presence of one or more fluids (water, oil, gas, etc.) within the skeleton must be taken into account when evaluating the interaction between the different phases of the continuum body. A multiphase three-dimensional (3D) coupled model of finite strains, suitable for dealing with solid-displacement and fluid-diffusion problems, is described for assumed elastoplastic behavior of the solid phase. Particularly, a 3D mixed finite element was implemented to fulfill stability requirements of the adopted formulation, and a permeability tensor dependent on deformation is introduced. A consolidation scenario induced by silo filling was investigated, and the effects of the adoption of finite strains are discusse

    Modelling soil-water interaction with the Material Point Method. Evaluation of single-point and double-point formulations

    Get PDF
    Many problems in geotechnical engineering involve large deformations and soil-water interactions, which pose challenging issues in computational geomechanics. In the last decade, the Material Point Method (MPM) has been successfully applied in a number of large-deformation geotechnical problems and multi-phase MPM formulations have been recently proposed. In particular, there exist two advanced coupled hy-dro-mechanical MPM approaches to model the interaction between solid grains and pore fluids: the single-point and the double-point formulation. The first discretizes the soil-water mixture with a single set of ma-terial points (MP) which moves according to the solid velocity field. The latter uses two sets of MP one for the fluid phase and the other for the solid phase and they move according to the respective velocity field. The aims of this work is to present and compare the two theories, to emphasize their limitations and poten-tialities, and to discuss their applicability in the geotechnical field. To this end, the results of two numerical examples carried out by using both formulations are presented: a 1D-consolidation problem and a saturated column collapse problem

    Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods

    Get PDF
    In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partial differential system and establish its well-posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid High-Order discretization supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the probability error of the Polynomial Chaos approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.Comment: 30 pages, 15 Figure

    Mechanics of a Plant in Fluid Flow

    Full text link
    Plants live in constantly moving fluid, whether air or water. In response to the loads associated with fluid motion, plants bend and twist, often with great amplitude. These large deformations are not found in traditional engineering application and thus necessitate new specialised scientific developments. Studying Fluid-Structure Interactions (FSI) in botany, forestry and agricultural science is crucial to the optimisation of biomass production for food, energy, and construction materials. FSI are also central in the study of the ecological adaptation of plants to their environment. This review paper surveys the mechanics of FSI on individual plants. We present a short refresher on fluids mechanics then dive in the statics and dynamics of plant-fluid interactions. For every phenomenon considered, we present the appropriate dimensionless numbers to characterise the problem, discuss the implications of these phenomena on biological processes, and propose future research avenues. We cover the concept of reconfiguration while considering poroelasticity, torsion, chirality, buoyancy, and skin friction. We also cover the dynamical phenomena of wave action, flutter, and vortex-induced vibrations.Comment: 26 pages, 8 figure

    Dynamic problems for metamaterials: Review of existing models and ideas for further research

    Get PDF
    Metamaterials are materials especially engineered to have a peculiar physical behaviour, to be exploited for some well-specified technological application. In this context we focus on the conception of general micro-structured continua, with particular attention to piezoelectromechanical structures, having a strong coupling between macroscopic motion and some internal degrees of freedom, which may be electric or, more generally, related to some micro-motion. An interesting class of problems in this context regards the design of wave-guides aimed to control wave propagation. The description of the state of the art is followed by some hints addressed to describe some possible research developments and in particular to design optimal design techniques for bone reconstruction or systems which may block wave propagation in some frequency ranges, in both linear and non-linear fields. (C) 2014 Elsevier Ltd. All rights reserved

    A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain

    Get PDF
    An adaptively stabilized finite element scheme is proposed for a strongly coupled hydro-mechanical problem in fluid-infiltrating porous solids at finite strain. We first present the derivation of the poromechanics model via mixture theory in large deformation. By exploiting assumed deformation gradient techniques, we develop a numerical procedure capable of simultaneously curing the multiple-locking phenomena related to shear failure, incompressibility imposed by pore fluid, and/or incompressible solid skeleton and produce solutions that satisfy the inf-sup condition. The template-based generic programming and automatic differentiation (AD) techniques used to implement the stabilized model are also highlighted. Finally, numerical examples are given to show the versatility and efficiency of this model

    Analytical and Numerical Aspects of Porous Media Flow

    Get PDF
    The Brinkman equations model fluid flow through porous media and are particularly interesting in regimes where viscous shear effects cannot be neglected. Two model parameters in the momentum balance function as weights for the terms related to inter-particle friction and bulk resistance. If these are not in balance, then standard finite element methods might suffer from instabilities or error estimates might deteriorate. In particular the limit case, where the Brinkman problem reduces to a Darcy problem, demands for special attention. This thesis proposes a low-order finite element method which is uniformly stable with respect to the flow regimes captured by the Brinkman model, including the Darcy limit. To that end, linear equal-order approximations are combined with a pressure stabilization technique, a grad-div stabilization, and a penalty-free non-symmetric Nitsche method. The combination of these ingredients allows to develop a robust method, which is proven to be well-posed for the whole family of problems in two spatial dimensions, even if any Brinkman parameter vanishes. An a priori error analysis reveals optimal convergence in the considered norm. A convergence study based on problems with known analytic solutions confirms the robust first order convergence for reasonable ranges of numerical (stabilization) parameters. Further, numerical investigations that partly extend the theoretical framework are considered, revealing strengths and weaknesses of the approach. An application motivated by the optimization of geothermal energy production completes the thesis. Here, the proposed method is included in a multi-physics discrete model, appropriate to describe the thermo-hydraulics in hot, sedimentary, essentially horizontal aquifers. An immersed boundary method is adopted in order to allow a flexible, automatic optimization without regenerating the computational mesh. Utilizing the developed computational framework, the optimized multi-well arrangements with respect to the net energy gain are presented and discussed for different geothermal and hydrogeological setups. The results show that taking into account heterogeneous permeability structures and variable aquifer temperatures might drastically affect the optimal configuration of the wells

    Soft grain compression: beyond the jamming point

    Get PDF
    We present the experimental studies of highly strained soft bidisperse granular systems made of hyperelastic and plastic particles. We explore the behavior of granular matter deep in the jammed state from local field measurement from the grain scale to the global scale. By mean of digital image correlation and accurate image recording we measure for each compression step the evolution of the particle geometries and their right Cauchy-Green strain tensor fields. We analyze the evolution of the usual macroscopic observables (stress, packing fraction, coordination, fraction of non-rattlers, \textit{etc}.) along the compression process through the jamming point and far beyond. We also analyze the evolution of the local strain statistics and evidence a crossover in the material behavior deep in the jammed state. We show that this crossover depends on the particle material. We argue that the strain field is a reliable observable to describe the evolution of a granular system through the jamming transition and deep in the dense packing state whatever is the material behavior.Comment: 10 figure
    corecore