5,844 research outputs found
Structural Characterization of Quaterphenyl Cation Radical: X-ray Crystallographic Evidence of Quinoidal Charge Delocalization in Poly-\u3cem\u3ep\u3c/em\u3e-phenylene Cation Radicals
Quaterphenyl derivative (QP) containing tert-butyl solubilizing groups at the terminal positions yields a stable cation radical salt that was isolated, and its structure was established by X-ray crystallography. The crystal structure of neutral QP and its cation radical (QP+•SbCl6-) provides unequivocal evidence for the quinoidal stabilization of the cationic charge or polaron by smoothing out the torsional motion of the interconnected p-phenylene rings. Such an observation of stabilization of the cationic charge in a poly-p-phenylene (PPP) derivative forms the basis for the noted high conductivities in PPP oligomers in their doped state
Structural Characterization of Quaterphenyl Cation Radical: X-ray Crystallographic Evidence of Quinoidal Charge Delocalization in Poly-\u3cem\u3ep\u3c/em\u3e-phenylene Cation Radicals
Quaterphenyl derivative (QP) containing tert-butyl solubilizing groups at the terminal positions yields a stable cation radical salt that was isolated, and its structure was established by X-ray crystallography. The crystal structure of neutral QP and its cation radical (QP+•SbCl6-) provides unequivocal evidence for the quinoidal stabilization of the cationic charge or polaron by smoothing out the torsional motion of the interconnected p-phenylene rings. Such an observation of stabilization of the cationic charge in a poly-p-phenylene (PPP) derivative forms the basis for the noted high conductivities in PPP oligomers in their doped state
Molecular Actuator: Redox-Controlled Clam-Like Motion in a Bichromophoric Electron Donor
The one-electron oxidation of tetramethoxydibenzobicyclo[4.4.1]undecane (4) prompts it to undergo a clam-like electromechanical actuation into a cofacially π-stacked conformer as established by (i) electrochemical analysis, (ii) by the observation of the intense charge-resonance transition in the near IR region in its cation radical spectrum, and (iii) by X-ray crystallographic characterization of the isolated cation radical salt (4+• SbCl6−)
The Role of Torsional Dynamics on Hole and Exciton Stabilization in π‐Stacked Assemblies: Design of Rigid Torsionomers of a Cofacial Bifluorene
Exciton and charge delocalization across π‐stacked assemblies is of importance in biological systems and functional polymeric materials. To examine the requirements for exciton and hole stabilization, cofacial bifluorene (F2) torsionomers were designed, synthesized, and characterized: unhindered (model) MeF2, sterically hindered tBuF2, and cyclophane‐like CF2, where fluorenes are locked in a perfect sandwich orientation via two methylene linkers. This set of bichromophores with varied torsional rigidity and orbital overlap shows that exciton stabilization requires a perfect sandwich‐like arrangement, as seen by strong excimeric‐like emission only in CF2 and MeF2. In contrast, hole delocalization is less geometrically restrictive and occurs even in sterically hindered tBuF2, as judged by 160 mV hole stabilization and a near‐IR band in the spectrum of its cation radical. These findings underscore the diverse requirements for charge and energy delocalization across π‐stacked assemblies
X-ray Structural Characterization of Charge Delocalization onto the Three Equivalent Benzenoid Rings in Hexamethoxytriptycene Cation Radical
Definitive X-ray crystallographic evidence is obtained for a single hole (or a polaron) to be uniformly distributed on the three equivalent 1,2-dimethoxybenzenoid (or veratrole) rings in the hexamethoxytriptycene cation radical. This conclusion is further supported by electrochemical analysis and by the observation of an intense near-IR transition in its electronic spectrum, as well as by comparison of the spectral and electrochemical characteristics with the model compounds containing one and two dimethoxybenzene rings
Dehydrogenated polycyclic aromatic hydrocarbons and UV bump
Recent calculations have shown that the UV bump at about 217.5 nm in the
extinction curve can be explained by a complex mixture of PAHs in several
charge states. Other studies proposed that the carriers are a restricted
population made of neutral and singly-ionised dehydrogenated coronene molecules
(C24Hn, n less than 3), in line with models of the hydrogenation state of
interstellar PAHs predicting that medium-sized species are highly
dehydrogenated. To assess the observational consequences of the latter
hypothesis we have undertaken a systematic study of the electronic spectra of
dehydrogenated PAHs. We use our first results to see whether such spectra show
strong general trends upon dehydrogenation. We used state-of-the-art techniques
in the framework of the density functional theory (DFT) to obtain the
electronic ground-state geometries, and of the time- dependent DFT to evaluate
the electronic excited-state properties. We computed the absorption
cross-section of the species C24Hn (n=12,10,8,6,4,2,0) in their neutral and
cationic charge-states. Similar calculations were performed for other PAHs and
their fullydehydrogenated counterparts. pi electron energies are always found
to be strongly affected by dehydrogenation. In all cases we examined,
progressive dehydrogenation translates into a correspondingly progressive blue
shift of the main electronic transitions. In particular, the pi-pi* collective
resonance becomes broader and bluer with dehydrogenation. Its calculated energy
position is therefore predicted to fall in the gap between the UV bump and the
far-UV rise of the extinction curve. Since this effect appears to be
systematic, it poses a tight observational limit on the column density of
strongly dehydrogenated medium-sized PAHs.Comment: 5 pages, 7 figures, Astronomy & Astrophysics, in pres
Molecular Actuators in Action: Electron-Transfer-Induced Conformation Transformation in Cofacially Arrayed Polyfluorenes
There is much current interest in the design of molecular actuators, which undergo reversible, controlled motion in response to an external stimulus (light, heat, oxidation, etc.). Here we describe the design and synthesis of a series of cofacially arrayed polyfluorenes (MeFnHm) with varied end-capping groups, which undergo redox-controlled electromechanical actuation. Such cofacially arrayed polyfluorenes are a model molecular scaffold to investigate fundamental processes of charge and energy transfer across a π-stacked assembly, and we show with the aid of NMR and optical spectroscopies, X-ray crystallography and DFT calculations that in the neutral state the conformation of MeFnH1 and MeFnH2 is open rather than cofacial, with a conformational dependence that is highly influenced by the local environment. Upon (electro)chemical oxidation, these systems undergo a reversible transformation into a closed fully π-stacked conformation, driven by charge-resonance stabilization of the cationic charge. These findings are expected to aid the design of novel wire-like cofacially arrayed systems capable of undergo redox-controlled actuation
Synthesis, Electronic Properties, and X-ray Structural Characterization of Tetrarylbenzo[1,2-\u3cem\u3eb\u3c/em\u3e:4,5-\u3cem\u3eb\u3c/em\u3e′]difuran Cation Radicals
Electroactive tetraarylbenzo[1,2-b:4,5-b′]difuran (BDF) and model diarylbenzofuran derivatives are synthesized and their structures are established by X-ray crystallography. Isolation and X-ray crystallographic characterization of the robust cation-radical salts of BDF derivatives confirm that a single charge in the BDFs is stabilized largely by the benzodifuran and coplanar α-aryl groups lying on the longitudinal axis. These findings suggest that the linear arrays of BDFs may allow the construction of molecular wires suitable for long-range electron transport
Recommended from our members
Installation of internal electric fields by non-redox active cations in transition metal complexes.
Local electric fields contribute to the high selectivity and catalytic activity in enzyme active sites and confined reaction centers in zeolites by modifying the relative energy of transition states, intermediates and/or products. Proximal charged functionalities can generate equivalent internal electric fields in molecular systems but the magnitude of their effect and impact on electronic structure has been minimally explored. To generate quantitative insight into installing internal fields in synthetic systems, we report an experimental and computational study using transition metal (M1) Schiff base complexes functionalized with a crown ether unit containing a mono- or dicationic alkali or alkaline earth metal ion (M2). The synthesis and characterization of the complexes M1 = Ni(ii) and M2 = Na+ or Ba2+ are reported. The electronic absorption spectra and density functional theory (DFT) calculations establish that the cations generate a robust electric field at the metal, which stabilizes the Ni-based molecular orbitals without significantly changing their relative energies. The stabilization is also reflected in the experimental Ni(ii/i) reduction potentials, which are shifted 0.12 V and 0.34 V positive for M2 = Na+ and Ba2+, respectively, compared to a complex lacking a proximal cation. To compare with the cationic Ni complexes, we also synthesized a series of Ni(salen) complexes modified in the 5' position with electron-donating and -withdrawing functionalities (-CF3, -Cl, -H, -tBu, and -OCH3). Data from this series of compounds provides further evidence that the reduction potential shifts observed in the cationic complexes are not due to inductive ligand effects. DFT studies were also performed on the previously reported monocationic and dicatonic Fe(ii)(CH3CN) and Fe(iii)Cl analogues of this system to analyze the impact of an anionic chloride on the electrostatic potential and electronic structure of the Fe site
Ionic correlations at the nanoscale: inversion of selectivity in a bio-nanochannel
Here we show, combining a simulation and theoretical study, that
electrostatic correlations typical of multivalent ions can reverse the
selectivity of a biological nanochannel. Our results provide a physical
mechanism for a new, experimentally observed phenomenon, namely the inversion
of the selectivity of a bacterial porin (the E. Coli OmpF) in presence of
divalent and trivalent cations. Also, the differences and similarities between
the driving force for this phenomenon and other similar nano and micro-escale
electrokinetic effects (e.g. inversion of streaming current in silica
nanochannels) are explored
- …
