2,727 research outputs found

    Deep Detection of People and their Mobility Aids for a Hospital Robot

    Full text link
    Robots operating in populated environments encounter many different types of people, some of whom might have an advanced need for cautious interaction, because of physical impairments or their advanced age. Robots therefore need to recognize such advanced demands to provide appropriate assistance, guidance or other forms of support. In this paper, we propose a depth-based perception pipeline that estimates the position and velocity of people in the environment and categorizes them according to the mobility aids they use: pedestrian, person in wheelchair, person in a wheelchair with a person pushing them, person with crutches and person using a walker. We present a fast region proposal method that feeds a Region-based Convolutional Network (Fast R-CNN). With this, we speed up the object detection process by a factor of seven compared to a dense sliding window approach. We furthermore propose a probabilistic position, velocity and class estimator to smooth the CNN's detections and account for occlusions and misclassifications. In addition, we introduce a new hospital dataset with over 17,000 annotated RGB-D images. Extensive experiments confirm that our pipeline successfully keeps track of people and their mobility aids, even in challenging situations with multiple people from different categories and frequent occlusions. Videos of our experiments and the dataset are available at http://www2.informatik.uni-freiburg.de/~kollmitz/MobilityAidsComment: 7 pages, ECMR 2017, dataset and videos: http://www2.informatik.uni-freiburg.de/~kollmitz/MobilityAids

    S-OHEM: Stratified Online Hard Example Mining for Object Detection

    Full text link
    One of the major challenges in object detection is to propose detectors with highly accurate localization of objects. The online sampling of high-loss region proposals (hard examples) uses the multitask loss with equal weight settings across all loss types (e.g, classification and localization, rigid and non-rigid categories) and ignores the influence of different loss distributions throughout the training process, which we find essential to the training efficacy. In this paper, we present the Stratified Online Hard Example Mining (S-OHEM) algorithm for training higher efficiency and accuracy detectors. S-OHEM exploits OHEM with stratified sampling, a widely-adopted sampling technique, to choose the training examples according to this influence during hard example mining, and thus enhance the performance of object detectors. We show through systematic experiments that S-OHEM yields an average precision (AP) improvement of 0.5% on rigid categories of PASCAL VOC 2007 for both the IoU threshold of 0.6 and 0.7. For KITTI 2012, both results of the same metric are 1.6%. Regarding the mean average precision (mAP), a relative increase of 0.3% and 0.5% (1% and 0.5%) is observed for VOC07 (KITTI12) using the same set of IoU threshold. Also, S-OHEM is easy to integrate with existing region-based detectors and is capable of acting with post-recognition level regressors.Comment: 9 pages, 3 figures, accepted by CCCV 201

    Multiple Instance Curriculum Learning for Weakly Supervised Object Detection

    Full text link
    When supervising an object detector with weakly labeled data, most existing approaches are prone to trapping in the discriminative object parts, e.g., finding the face of a cat instead of the full body, due to lacking the supervision on the extent of full objects. To address this challenge, we incorporate object segmentation into the detector training, which guides the model to correctly localize the full objects. We propose the multiple instance curriculum learning (MICL) method, which injects curriculum learning (CL) into the multiple instance learning (MIL) framework. The MICL method starts by automatically picking the easy training examples, where the extent of the segmentation masks agree with detection bounding boxes. The training set is gradually expanded to include harder examples to train strong detectors that handle complex images. The proposed MICL method with segmentation in the loop outperforms the state-of-the-art weakly supervised object detectors by a substantial margin on the PASCAL VOC datasets.Comment: Published in BMVC 201
    • …
    corecore