222,131 research outputs found

    On the power of foundation models

    Full text link
    With infinitely many high-quality data points, infinite computational power, an infinitely large foundation model with a perfect training algorithm and guaranteed zero generalization error on the pretext task, can the model be used for everything? This question cannot be answered by the existing theory of representation, optimization or generalization, because the issues they mainly investigate are assumed to be nonexistent here. In this paper, we show that category theory provides powerful machinery to answer this question. We have proved three results. The first one limits the power of prompt-based learning, saying that the model can solve a downstream task with prompts if and only if the task is representable. The second one says fine tuning does not have this limit, as a foundation model with the minimum required power (up to symmetry) can theoretically solve downstream tasks with fine tuning and enough resources. Our final result can be seen as a new type of generalization theorem, showing that the foundation model can generate unseen objects from the target category (e.g., images) using the structural information from the source category (e.g., texts). Along the way, we provide a categorical framework for supervised and self-supervised learning, which might be of independent interest

    The Markowitz Category

    Get PDF
    We give an algebraic definition of a Markowitz market and classify markets up to isomorphism. Given this classification, the theory of portfolio optimization in Markowitz markets without short selling constraints becomes trivial. Conversely, this classification shows that, up to isomorphism, there is little that can be said about a Markowitz market that is not already detected by the theory of portfolio optimization. In particular, if one seeks to develop a simplified low-dimensional model of a large financial market using mean--variance analysis alone, the resulting model can be at most two-dimensional.Comment: 1 figur

    The Design of the Fifth Answer Set Programming Competition

    Full text link
    Answer Set Programming (ASP) is a well-established paradigm of declarative programming that has been developed in the field of logic programming and nonmonotonic reasoning. Advances in ASP solving technology are customarily assessed in competition events, as it happens for other closely-related problem-solving technologies like SAT/SMT, QBF, Planning and Scheduling. ASP Competitions are (usually) biennial events; however, the Fifth ASP Competition departs from tradition, in order to join the FLoC Olympic Games at the Vienna Summer of Logic 2014, which is expected to be the largest event in the history of logic. This edition of the ASP Competition series is jointly organized by the University of Calabria (Italy), the Aalto University (Finland), and the University of Genova (Italy), and is affiliated with the 30th International Conference on Logic Programming (ICLP 2014). It features a completely re-designed setup, with novelties involving the design of tracks, the scoring schema, and the adherence to a fixed modeling language in order to push the adoption of the ASP-Core-2 standard. Benchmark domains are taken from past editions, and best system packages submitted in 2013 are compared with new versions and solvers. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 10 page

    Strongly convex functions, Moreau envelopes and the generic nature of convex functions with strong minimizers

    Get PDF
    In this work, using Moreau envelopes, we define a complete metric for the set of proper lower semicontinuous convex functions. Under this metric, the convergence of each sequence of convex functions is epi-convergence. We show that the set of strongly convex functions is dense but it is only of the first category. On the other hand, it is shown that the set of convex functions with strong minima is of the second category
    • …
    corecore