148 research outputs found

    Categorification of persistent homology

    Full text link
    We redevelop persistent homology (topological persistence) from a categorical point of view. The main objects of study are diagrams, indexed by the poset of real numbers, in some target category. The set of such diagrams has an interleaving distance, which we show generalizes the previously-studied bottleneck distance. To illustrate the utility of this approach, we greatly generalize previous stability results for persistence, extended persistence, and kernel, image and cokernel persistence. We give a natural construction of a category of interleavings of these diagrams, and show that if the target category is abelian, so is this category of interleavings.Comment: 27 pages, v3: minor changes, to appear in Discrete & Computational Geometr

    Geometry and categorification

    Full text link
    We describe a number of geometric contexts where categorification appears naturally: coherent sheaves, constructible sheaves and sheaves of modules over quantizations. In each case, we discuss how "index formulas" allow us to easily perform categorical calculations, and readily relate classical constructions of geometric representation theory to categorical ones.Comment: 23 pages. an expository article to appear in "Perspectives on Categorification.

    Persistent Magnitude

    Get PDF
    2010 Mathematics Subject Classification. Primary 55N99; Secondary 55N35, 51F99, 11A25. DG was supported by EPSRC grant EP/P025072/1.Peer reviewedPostprin

    Magnitude cohomology

    Full text link
    Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a 'recovery theorem' showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.Comment: 27 page
    corecore