14 research outputs found

    Object Recognition from very few Training Examples for Enhancing Bicycle Maps

    Full text link
    In recent years, data-driven methods have shown great success for extracting information about the infrastructure in urban areas. These algorithms are usually trained on large datasets consisting of thousands or millions of labeled training examples. While large datasets have been published regarding cars, for cyclists very few labeled data is available although appearance, point of view, and positioning of even relevant objects differ. Unfortunately, labeling data is costly and requires a huge amount of work. In this paper, we thus address the problem of learning with very few labels. The aim is to recognize particular traffic signs in crowdsourced data to collect information which is of interest to cyclists. We propose a system for object recognition that is trained with only 15 examples per class on average. To achieve this, we combine the advantages of convolutional neural networks and random forests to learn a patch-wise classifier. In the next step, we map the random forest to a neural network and transform the classifier to a fully convolutional network. Thereby, the processing of full images is significantly accelerated and bounding boxes can be predicted. Finally, we integrate data of the Global Positioning System (GPS) to localize the predictions on the map. In comparison to Faster R-CNN and other networks for object recognition or algorithms for transfer learning, we considerably reduce the required amount of labeled data. We demonstrate good performance on the recognition of traffic signs for cyclists as well as their localization in maps.Comment: Submitted to IV 2018. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualization and Social Computing

    Learning convolutional neural networks for object detection with very little training data

    Get PDF
    In recent years, convolutional neural networks have shown great success in various computer vision tasks such as classification, object detection, and scene analysis. These algorithms are usually trained on large datasets consisting of thousands or millions of labeled training examples. The availability of sufficient data, however, limits possible applications. While large amounts of data can be quickly collected, supervised learning further requires labeled data. Labeling data, unfortunately, is usually very time-consuming and literally expensive. This chapter addresses the problem of learning with very little labeled data for extracting information about the infrastructure in urban areas. The aim is to recognize particular traffic signs in crowdsourced data to collect information which is of interest to cyclists. The presented system for object detection is trained with very few training examples. To achieve this, the advantages of convolutional neural networks and random forests are combined to learn a patch-wise classifier. In the next step, the random forest is mapped to a neural network and the classifier is transformed to a fully convolutional network. Thereby, the processing of full images is significantly accelerated and bounding boxes can be predicted. Finally, GPS-data is integrated to localize the predictions on the map and multiple observations are merged to further improve the localization accuracy. In comparison to faster R-CNN and other networks for object detection or algorithms for transfer learning, the required amount of labeled data is considerably reduced.</p
    corecore