52 research outputs found

    How to Identify Investor's types in real financial markets by means of agent based simulation

    Full text link
    The paper proposes a computational adaptation of the principles underlying principal component analysis with agent based simulation in order to produce a novel modeling methodology for financial time series and financial markets. Goal of the proposed methodology is to find a reduced set of investor s models (agents) which is able to approximate or explain a target financial time series. As computational testbed for the study, we choose the learning system L FABS which combines simulated annealing with agent based simulation for approximating financial time series. We will also comment on how L FABS s architecture could exploit parallel computation to scale when dealing with massive agent simulations. Two experimental case studies showing the efficacy of the proposed methodology are reported.Comment: 18 pages, in pres

    Stories from different worlds in the universe of complex systems: A journey through microstructural dynamics and emergent behaviours in the human heart and financial markets

    Get PDF
    A physical system is said to be complex if it exhibits unpredictable structures, patterns or regularities emerging from microstructural dynamics involving a large number of components. The study of complex systems, known as complexity science, is maturing into an independent and multidisciplinary area of research seeking to understand microscopic interactions and macroscopic emergence across a broad spectrum systems, such as the human brain and the economy, by combining specific modelling techniques, data analytics, statistics and computer simulations. In this dissertation we examine two different complex systems, the human heart and financial markets, and present various research projects addressing specific problems in these areas. Cardiac fibrillation is a diffuse pathology in which the periodic planar electrical conduction across the cardiac tissue is disrupted and replaced by fast and disorganised electrical waves. In spite of a century-long history of research, numerous debates and disputes on the mechanisms of cardiac fibrillation are still unresolved while the outcomes of clinical treatments remain far from satisfactory. In this dissertation we use cellular automata and mean-field models to qualitatively replicate the onset and maintenance of cardiac fibrillation from the interactions among neighboring cells and the underlying topology of the cardiac tissue. We use these models to study the transition from paroxysmal to persistent atrial fibrillation, the mechanisms through which the gap-junction enhancer drug Rotigaptide terminates cardiac fibrillation and how focal and circuital drivers of fibrillation may co-exist as projections of transmural electrical activities. Financial markets are hubs in which heterogeneous participants, such as humans and algorithms, adopt different strategic behaviors to exchange financial assets. In recent decades the widespread adoption of algorithmic trading, the electronification of financial transactions, the increased competition among trading venues and the use of sophisticated financial instruments drove the transformation of financial markets into a global and interconnected complex system. In this thesis we introduce agent-based and state-space models to describe specific microstructural dynamics in the stock and foreign exchange markets. We use these models to replicate the emergence of cross-currency correlations from the interactions between heterogeneous participants in the currency market and to disentangle the relationships between price fluctuations, market liquidity and demand/supply imbalances in the stock market.Open Acces

    Modeling financial environments using geometric fractional Brownian motion model with long memory stochastic volatility

    Get PDF
    Geometric Fractional Brownian Motion (GFBM) model is widely used in financial environments. This model consists of important parameters i.e. mean, volatility, and Hurst index, which are significant to many problems in finance particularly option pricing, value at risk, exchange rate, and mortgage insurance. Most current works investigated GFBM under the assumption of its volatility that is constant due to its simplicity. However, such assumption is normally rejected in most empirical studies. Therefore, this research develops a new GFBM model that can better describe and reflect real life situations particularly in financial scenario. All parameters involved in the developed model are estimated by using innovation algorithm. A simulation study is then conducted to determine the performance of the new model. The results of simulation reveal that the proposed estimators are efficient based on the bias, variance, and mean square error. Subsequently, two theorems on existence and uniqueness of the solution for the new model and its generalisation are constructed. The validation of the developed model was then carried out by comparing with other models in forecasting adjusted prices of Standard and Poor 500, Shanghai Stock Exchange Composite Index, and FTSE Kuala Lumpur Composite Index. Empirical studies on four selected financial applications, i.e. option pricing, value at risk, exchange rate, and mortgage insurance, indicate that the new model performs better than the existing ones. Hence, the new model has strong potential to be employed as an underlying model for any financial applications that capable of reflecting the real situation more accurately

    Three Risky Decades: A Time for Econophysics?

    Get PDF
    Our Special Issue we publish at a turning point, which we have not dealt with since World War II. The interconnected long-term global shocks such as the coronavirus pandemic, the war in Ukraine, and catastrophic climate change have imposed significant humanitary, socio-economic, political, and environmental restrictions on the globalization process and all aspects of economic and social life including the existence of individual people. The planet is trapped—the current situation seems to be the prelude to an apocalypse whose long-term effects we will have for decades. Therefore, it urgently requires a concept of the planet's survival to be built—only on this basis can the conditions for its development be created. The Special Issue gives evidence of the state of econophysics before the current situation. Therefore, it can provide excellent econophysics or an inter-and cross-disciplinary starting point of a rational approach to a new era

    Network communities and the foreign exchange market

    Get PDF
    Many systems studied in the biological, physical, and social sciences are composed of multiple interacting components. Often the number of components and interactions is so large that attaining an understanding of the system necessitates some form of simplication. A common representation that captures the key connection patterns is a network in which the nodes correspond to system components and the edges represent interactions. In this thesis we use network techniques and more traditional clustering methods to coarse-grain systems composed of many interacting components and to identify the most important interactions.\ud \ud This thesis focuses on two main themes: the analysis of financial systems and the study of network communities, an important mesoscopic feature of many networks. In the first part of the thesis, we discuss some of the issues associated with the analysis of financial data and investigate the potential for risk-free profit in the foreign exchange market. We then use principal component analysis (PCA) to identify common features in the correlation structure of different financial markets. In the second part of the thesis, we focus on network communities. We investigate the evolving structure of foreign exchange (FX) market correlations by representing the correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes and uncovers major trading changes that occurred in the market. Finally, we consider the community structure of networks from a wide variety of different disciplines. We introduce a framework for comparing network communities and use this technique to identify networks with similar mesoscopic structures. Based on this similarity, we create taxonomies of a large set of networks from different fields and individual families of networks from the same field

    Big Data, machine learning and challenges of high dimensionality in financial administration

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade e Gestão Pública, Programa de Pós-Graduação em Administração, 2019.A presente tese discute a emergência do Big Data e do aprendizado de máquinas em vários aspectos da administração de empresas, enfatizando as contribuições metodológicas deste paradigma baseado no raciocínio indutivo em finanças e os benefícios desta abordagem em relação a ferramentas econométricas e métodos tradicionais de análise de dados. Os fundamentos estatísticos do aprendizado de máquina são introduzidos e os desafios da alta dimensionalidade em problemas financeiros são analisados, incluindo as implicações práticas da incorporação de não- linearidades, a regularização do nível de complexidade adicional e a previsão em dados de alta frequência. Finalmente, três aplicações empíricas foram propostas, relativas, respectivamente, à previsão de volatilidade, à alocação de portfólio e à previsão da direção do preço de ações; Nessas aplicações, diferentes modelos de aprendizado de máquina foram explorados, e os insights dos resultados foram discutidos à luz da teoria financeira e das evidências empíricas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).This thesis discusses the emergence of Big Data and machine learning and their applications in various aspects of Business Administration, emphasizing the methodological contributions of this inductive-based paradigm in finance and the improvements of this approach over econometric tools and traditionally well established methods of data analysis. The statistical foundations of machine learning are introduced and the challenges of high-dimensionality in finance problems are analyzed, including the practical implications of nonlinearity incorporation, regularization of the additional complexity level and forecasting for high-frequency data. Finally, three empirical applications are proposed, concerning respectively on volatility forecasting, portfolio allocation, and stock price direction prediction; in those applications, different machine learning models are explored, and the insights from the results were discussed in light of both the finance theory and the empirical evidences

    Exploring the value of big data analysis of Twitter tweets and share prices

    Get PDF
    Over the past decade, the use of social media (SM) such as Facebook, Twitter, Pinterest and Tumblr has dramatically increased. Using SM, millions of users are creating large amounts of data every day. According to some estimates ninety per cent of the content on the Internet is now user generated. Social Media (SM) can be seen as a distributed content creation and sharing platform based on Web 2.0 technologies. SM sites make it very easy for its users to publish text, pictures, links, messages or videos without the need to be able to program. Users post reviews on products and services they bought, write about their interests and intentions or give their opinions and views on political subjects. SM has also been a key factor in mass movements such as the Arab Spring and the Occupy Wall Street protests and is used for human aid and disaster relief (HADR). There is a growing interest in SM analysis from organisations for detecting new trends, getting user opinions on their products and services or finding out about their online reputation. Companies such as Amazon or eBay use SM data for their recommendation engines and to generate more business. TV stations buy data about opinions on their TV programs from Facebook to find out what the popularity of a certain TV show is. Companies such as Topsy, Gnip, DataSift and Zoomph have built their entire business models around SM analysis. The purpose of this thesis is to explore the economic value of Twitter tweets. The economic value is determined by trying to predict the share price of a company. If the share price of a company can be predicted using SM data, it should be possible to deduce a monetary value. There is limited research on determining the economic value of SM data for “nowcasting”, predicting the present, and for forecasting. This study aims to determine the monetary value of Twitter by correlating the daily frequencies of positive and negative Tweets about the Apple company and some of its most popular products with the development of the Apple Inc. share price. If the number of positive tweets about Apple increases and the share price follows this development, the tweets have predictive information about the share price. A literature review has found that there is a growing interest in analysing SM data from different industries. A lot of research is conducted studying SM from various perspectives. Many studies try to determine the impact of online marketing campaigns or try to quantify the value of social capital. Others, in the area of behavioural economics, focus on the influence of SM on decision-making. There are studies trying to predict financial indicators such as the Dow Jones Industrial Average (DJIA). However, the literature review has indicated that there is no study correlating sentiment polarity on products and companies in tweets with the share price of the company. The theoretical framework used in this study is based on Computational Social Science (CSS) and Big Data. Supporting theories of CSS are Social Media Mining (SMM) and sentiment analysis. Supporting theories of Big Data are Data Mining (DM) and Predictive Analysis (PA). Machine learning (ML) techniques have been adopted to analyse and classify the tweets. In the first stage of the study, a body of tweets was collected and pre-processed, and then analysed for their sentiment polarity towards Apple Inc., the iPad and the iPhone. Several datasets were created using different pre-processing and analysis methods. The tweet frequencies were then represented as time series. The time series were analysed against the share price time series using the Granger causality test to determine if one time series has predictive information about the share price time series over the same period of time. For this study, several Predictive Analytics (PA) techniques on tweets were evaluated to predict the Apple share price. To collect and analyse the data, a framework has been developed based on the LingPipe (LingPipe 2015) Natural Language Processing (NLP) tool kit for sentiment analysis, and using R, the functional language and environment for statistical computing, for correlation analysis. Twitter provides an API (Application Programming Interface) to access and collect its data programmatically. Whereas no clear correlation could be determined, at least one dataset was showed to have some predictive information on the development of the Apple share price. The other datasets did not show to have any predictive capabilities. There are many data analysis and PA techniques. The techniques applied in this study did not indicate a direct correlation. However, some results suggest that this is due to noise or asymmetric distributions in the datasets. The study contributes to the literature by providing a quantitative analysis of SM data, for example tweets about Apple and its most popular products, the iPad and iPhone. It shows how SM data can be used for PA. It contributes to the literature on Big Data and SMM by showing how SM data can be collected, analysed and classified and explore if the share price of a company can be determined based on sentiment time series. It may ultimately lead to better decision making, for instance for investments or share buyback

    On Explainable Deep Learning for Macroeconomic Forecasting and Finance

    Get PDF
    Deep Learning (DL) has gained momentum in recent years due to its incredible generalisation performance achieved across many learning tasks. Nevertheless, practitioners and academics have sometime been reluctant to apply these models because perceived as black boxes. This is particularly problematic in Economics and Finance. The objective of this thesis is to develop interpretable DL models and explainable DL tools with a focus on macroeconomic and financial applications. In doing so we highlight connections between such models and the standard economic ones. The first part of this work introduces a new class of interpretable models called Deep Dynamic Factor Models. The study merges the DL literature on autoencoders with that of the Econometrics on Dynamic Factor Models. Empirical validations of the approach are carried out both on synthetic and on real-time macroeconomic data. Part two of the work analyses feature attribution methods and Shapley values among explainability tools that are used to additively decompose model predictions. One of their limitations is highlighted, given that it is necessary to define a baseline that represents the missingness of a feature. A solution to the problem is proposed and compared against the ones currently in use both on simulated data and in the financial context of credit card default. We show that the proposed baseline is the only one that accounts for the specific use of the model. The final part of the work discusses the use of DL techniques for dynamic asset allocation. Using US market data, a comparison in recursive out-of-sample among different machine learning, economic-financial and hybrid models, including the one introduced in the first part of the work, is performed. Finally, a nonlinear factor-based portfolio performance attribution via the use of Shapley values and the baseline proposed in part two of the work is presented

    2015 Oklahoma Research Day Full Program

    Get PDF
    This document contains all abstracts from the 2015 Oklahoma Research Day held at Northeastern State University
    corecore