4 research outputs found

    Probabilistic reasoning with an enzyme-driven DNA device

    Get PDF
    We present a biomolecular probabilistic model driven by the action of a DNA toolbox made of a set of DNA templates and enzymes that is able to perform Bayesian inference. The model will take single-stranded DNA as input data, representing the presence or absence of a specific molecular signal (the evidence). The program logic uses different DNA templates and their relative concentration ratios to encode the prior probability of a disease and the conditional probability of a signal given the disease. When the input and program molecules interact, an enzyme-driven cascade of reactions (DNA polymerase extension, nicking and degradation) is triggered, producing a different pair of single-stranded DNA species. Once the system reaches equilibrium, the ratio between the output species will represent the application of Bayes? law: the conditional probability of the disease given the signal. In other words, a qualitative diagnosis plus a quantitative degree of belief in that diagno- sis. Thanks to the inherent amplification capability of this DNA toolbox, the resulting system will be able to to scale up (with longer cascades and thus more input signals) a Bayesian biosensor that we designed previously

    DNAコンピューティングシステムの設計支援 : DNAツールボックスとその拡張

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    DNA-BASED SELF-ASSEMBLY AND NANOROBOTICS: THEORY AND EXPERIMENTS

    Get PDF
    We study the following fundamental questions in DNA-based self-assembly and nanorobotics: How to control errors in self-assembly? How to construct complex nanoscale objects in simpler ways? How to transport nanoscale objects in programmable manner? Fault tolerance in self-assembly: Fault tolerant self-assembly is important for nanofab-rication and nanocomputing applications. It is desirable to design compact error-resilient schemes that do not result in the increase in the original size of the assemblies. We present a comprehensive theory of compact error-resilient schemes for algorithmic self-assembly in two and three dimensions, and discuss the limitations and capabilities of redundancy based compact error correction schemes. New and powerful self-assembly model: We develop a reversible self-assembly model in which the glue strength between two juxtaposed tiles is a function of the time they have been in neighboring positions. Under our time-dependent glue model, we can rigorously study and demonstrate catalysis and self-replication in the tile assembly. We can assemble thin rectangles of size k × N using O
    corecore