4,833 research outputs found

    Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching

    Full text link
    The deep multi-view stereo (MVS) and stereo matching approaches generally construct 3D cost volumes to regularize and regress the output depth or disparity. These methods are limited when high-resolution outputs are needed since the memory and time costs grow cubically as the volume resolution increases. In this paper, we propose a both memory and time efficient cost volume formulation that is complementary to existing multi-view stereo and stereo matching approaches based on 3D cost volumes. First, the proposed cost volume is built upon a standard feature pyramid encoding geometry and context at gradually finer scales. Then, we can narrow the depth (or disparity) range of each stage by the depth (or disparity) map from the previous stage. With gradually higher cost volume resolution and adaptive adjustment of depth (or disparity) intervals, the output is recovered in a coarser to fine manner. We apply the cascade cost volume to the representative MVS-Net, and obtain a 23.1% improvement on DTU benchmark (1st place), with 50.6% and 74.2% reduction in GPU memory and run-time. It is also the state-of-the-art learning-based method on Tanks and Temples benchmark. The statistics of accuracy, run-time and GPU memory on other representative stereo CNNs also validate the effectiveness of our proposed method.Comment: Accepted by CVPR2020 Ora

    Self-Supervised Learning for Stereo Matching with Self-Improving Ability

    Full text link
    Exiting deep-learning based dense stereo matching methods often rely on ground-truth disparity maps as the training signals, which are however not always available in many situations. In this paper, we design a simple convolutional neural network architecture that is able to learn to compute dense disparity maps directly from the stereo inputs. Training is performed in an end-to-end fashion without the need of ground-truth disparity maps. The idea is to use image warping error (instead of disparity-map residuals) as the loss function to drive the learning process, aiming to find a depth-map that minimizes the warping error. While this is a simple concept well-known in stereo matching, to make it work in a deep-learning framework, many non-trivial challenges must be overcome, and in this work we provide effective solutions. Our network is self-adaptive to different unseen imageries as well as to different camera settings. Experiments on KITTI and Middlebury stereo benchmark datasets show that our method outperforms many state-of-the-art stereo matching methods with a margin, and at the same time significantly faster.Comment: 13 pages, 11 figure

    Learning monocular depth estimation infusing traditional stereo knowledge

    Full text link
    Depth estimation from a single image represents a fascinating, yet challenging problem with countless applications. Recent works proved that this task could be learned without direct supervision from ground truth labels leveraging image synthesis on sequences or stereo pairs. Focusing on this second case, in this paper we leverage stereo matching in order to improve monocular depth estimation. To this aim we propose monoResMatch, a novel deep architecture designed to infer depth from a single input image by synthesizing features from a different point of view, horizontally aligned with the input image, performing stereo matching between the two cues. In contrast to previous works sharing this rationale, our network is the first trained end-to-end from scratch. Moreover, we show how obtaining proxy ground truth annotation through traditional stereo algorithms, such as Semi-Global Matching, enables more accurate monocular depth estimation still countering the need for expensive depth labels by keeping a self-supervised approach. Exhaustive experimental results prove how the synergy between i) the proposed monoResMatch architecture and ii) proxy-supervision attains state-of-the-art for self-supervised monocular depth estimation. The code is publicly available at https://github.com/fabiotosi92/monoResMatch-Tensorflow.Comment: accepted at CVPR 2019. Code available at https://github.com/fabiotosi92/monoResMatch-Tensorflo

    CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching

    Full text link
    Recently, the ever-increasing capacity of large-scale annotated datasets has led to profound progress in stereo matching. However, most of these successes are limited to a specific dataset and cannot generalize well to other datasets. The main difficulties lie in the large domain differences and unbalanced disparity distribution across a variety of datasets, which greatly limit the real-world applicability of current deep stereo matching models. In this paper, we propose CFNet, a Cascade and Fused cost volume based network to improve the robustness of the stereo matching network. First, we propose a fused cost volume representation to deal with the large domain difference. By fusing multiple low-resolution dense cost volumes to enlarge the receptive field, we can extract robust structural representations for initial disparity estimation. Second, we propose a cascade cost volume representation to alleviate the unbalanced disparity distribution. Specifically, we employ a variance-based uncertainty estimation to adaptively adjust the next stage disparity search space, in this way driving the network progressively prune out the space of unlikely correspondences. By iteratively narrowing down the disparity search space and improving the cost volume resolution, the disparity estimation is gradually refined in a coarse-to-fine manner. When trained on the same training images and evaluated on KITTI, ETH3D, and Middlebury datasets with the fixed model parameters and hyperparameters, our proposed method achieves the state-of-the-art overall performance and obtains the 1st place on the stereo task of Robust Vision Challenge 2020. The code will be available at https://github.com/gallenszl/CFNet.Comment: accepted by CVPR202

    A Large RGB-D Dataset for Semi-supervised Monocular Depth Estimation

    Full text link
    Current self-supervised methods for monocular depth estimation are largely based on deeply nested convolutional networks that leverage stereo image pairs or monocular sequences during a training phase. However, they often exhibit inaccurate results around occluded regions and depth boundaries. In this paper, we present a simple yet effective approach for monocular depth estimation using stereo image pairs. The study aims to propose a student-teacher strategy in which a shallow student network is trained with the auxiliary information obtained from a deeper and more accurate teacher network. Specifically, we first train the stereo teacher network by fully utilizing the binocular perception of 3-D geometry and then use the depth predictions of the teacher network to train the student network for monocular depth inference. This enables us to exploit all available depth data from massive unlabeled stereo pairs. We propose a strategy that involves the use of a data ensemble to merge the multiple depth predictions of the teacher network to improve the training samples by collecting non-trivial knowledge beyond a single prediction. To refine the inaccurate depth estimation that is used when training the student network, we further propose stereo confidence-guided regression loss that handles the unreliable pseudo depth values in occlusion, texture-less region, and repetitive pattern. To complement the existing dataset comprising outdoor driving scenes, we built a novel large-scale dataset consisting of one million outdoor stereo images taken using hand-held stereo cameras. Finally, we demonstrate that the monocular depth estimation network provides feature representations that are suitable for high-level vision tasks. The experimental results for various outdoor scenarios demonstrate the effectiveness and flexibility of our approach, which outperforms state-of-the-art approaches.Comment: https://dimlrgbd.github.io

    Learning for Disparity Estimation through Feature Constancy

    Full text link
    Stereo matching algorithms usually consist of four steps, including matching cost calculation, matching cost aggregation, disparity calculation, and disparity refinement. Existing CNN-based methods only adopt CNN to solve parts of the four steps, or use different networks to deal with different steps, making them difficult to obtain the overall optimal solution. In this paper, we propose a network architecture to incorporate all steps of stereo matching. The network consists of three parts. The first part calculates the multi-scale shared features. The second part performs matching cost calculation, matching cost aggregation and disparity calculation to estimate the initial disparity using shared features. The initial disparity and the shared features are used to calculate the feature constancy that measures correctness of the correspondence between two input images. The initial disparity and the feature constancy are then fed to a sub-network to refine the initial disparity. The proposed method has been evaluated on the Scene Flow and KITTI datasets. It achieves the state-of-the-art performance on the KITTI 2012 and KITTI 2015 benchmarks while maintaining a very fast running time.Comment: Accepted by CVPR 2018, 10 pages, 3 figure

    Multi-Scale Cost Volumes Cascade Network for Stereo Matching

    Full text link
    Stereo matching is essential for robot navigation. However, the accuracy of current widely used traditional methods is low, while methods based on CNN need expensive computational cost and running time. This is because different cost volumes play a crucial role in balancing speed and accuracy. Thus we propose MSCVNet, which combines traditional methods and neural networks to improve the quality of cost volume. Concretely, our network first generates multiple 3D cost volumes with different resolutions and then uses 2D convolutions to construct a novel cascade hourglass network for cost aggregation. Meanwhile, we design an algorithm to distinguish and calculate the loss for discontinuous areas of disparity result. According to the KITTI official website, our network is much faster than most top-performing methods (24 times than CSPN, 44 times than GANet, etc.). Meanwhile, compared to traditional methods (SPS-St, SGM) and other real-time stereo matching networks (Fast DS-CS, DispNetC, and RTSNet, etc.), our network achieves a big improvement in accuracy, demonstrating the feasibility and capability of the proposed method

    PatchmatchNet: Learned Multi-View Patchmatch Stereo

    Full text link
    We present PatchmatchNet, a novel and learnable cascade formulation of Patchmatch for high-resolution multi-view stereo. With high computation speed and low memory requirement, PatchmatchNet can process higher resolution imagery and is more suited to run on resource limited devices than competitors that employ 3D cost volume regularization. For the first time we introduce an iterative multi-scale Patchmatch in an end-to-end trainable architecture and improve the Patchmatch core algorithm with a novel and learned adaptive propagation and evaluation scheme for each iteration. Extensive experiments show a very competitive performance and generalization for our method on DTU, Tanks & Temples and ETH3D, but at a significantly higher efficiency than all existing top-performing models: at least two and a half times faster than state-of-the-art methods with twice less memory usage

    ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems

    Full text link
    In this paper we present ActiveStereoNet, the first deep learning solution for active stereo systems. Due to the lack of ground truth, our method is fully self-supervised, yet it produces precise depth with a subpixel precision of 1/30th1/30th of a pixel; it does not suffer from the common over-smoothing issues; it preserves the edges; and it explicitly handles occlusions. We introduce a novel reconstruction loss that is more robust to noise and texture-less patches, and is invariant to illumination changes. The proposed loss is optimized using a window-based cost aggregation with an adaptive support weight scheme. This cost aggregation is edge-preserving and smooths the loss function, which is key to allow the network to reach compelling results. Finally we show how the task of predicting invalid regions, such as occlusions, can be trained end-to-end without ground-truth. This component is crucial to reduce blur and particularly improves predictions along depth discontinuities. Extensive quantitatively and qualitatively evaluations on real and synthetic data demonstrate state of the art results in many challenging scenes.Comment: Accepted by ECCV2018, Oral Presentation, Main paper + Supplementary Material

    LiStereo: Generate Dense Depth Maps from LIDAR and Stereo Imagery

    Full text link
    An accurate depth map of the environment is critical to the safe operation of autonomous robots and vehicles. Currently, either light detection and ranging (LIDAR) or stereo matching algorithms are used to acquire such depth information. However, a high-resolution LIDAR is expensive and produces sparse depth map at large range; stereo matching algorithms are able to generate denser depth maps but are typically less accurate than LIDAR at long range. This paper combines these approaches together to generate high-quality dense depth maps. Unlike previous approaches that are trained using ground-truth labels, the proposed model adopts a self-supervised training process. Experiments show that the proposed method is able to generate high-quality dense depth maps and performs robustly even with low-resolution inputs. This shows the potential to reduce the cost by using LIDARs with lower resolution in concert with stereo systems while maintaining high resolution.Comment: 14 pages, 3 figures, 5 table
    corecore