4,104 research outputs found

    Group-Level Emotion Recognition Using a Unimodal Privacy-Safe Non-Individual Approach

    Get PDF
    This article presents our unimodal privacy-safe and non-individual proposal for the audio-video group emotion recognition subtask at the Emotion Recognition in the Wild (EmotiW) Challenge 2020 1. This sub challenge aims to classify in the wild videos into three categories: Positive, Neutral and Negative. Recent deep learning models have shown tremendous advances in analyzing interactions between people, predicting human behavior and affective evaluation. Nonetheless, their performance comes from individual-based analysis, which means summing up and averaging scores from individual detections, which inevitably leads to some privacy issues. In this research, we investigated a frugal approach towards a model able to capture the global moods from the whole image without using face or pose detection, or any individual-based feature as input. The proposed methodology mixes state-of-the-art and dedicated synthetic corpora as training sources. With an in-depth exploration of neural network architectures for group-level emotion recognition, we built a VGG-based model achieving 59.13% accuracy on the VGAF test set (eleventh place of the challenge). Given that the analysis is unimodal based only on global features and that the performance is evaluated on a real-world dataset, these results are promising and let us envision extending this model to multimodality for classroom ambiance evaluation, our final target application

    Timing is everything: A spatio-temporal approach to the analysis of facial actions

    No full text
    This thesis presents a fully automatic facial expression analysis system based on the Facial Action Coding System (FACS). FACS is the best known and the most commonly used system to describe facial activity in terms of facial muscle actions (i.e., action units, AUs). We will present our research on the analysis of the morphological, spatio-temporal and behavioural aspects of facial expressions. In contrast with most other researchers in the field who use appearance based techniques, we use a geometric feature based approach. We will argue that that approach is more suitable for analysing facial expression temporal dynamics. Our system is capable of explicitly exploring the temporal aspects of facial expressions from an input colour video in terms of their onset (start), apex (peak) and offset (end). The fully automatic system presented here detects 20 facial points in the first frame and tracks them throughout the video. From the tracked points we compute geometry-based features which serve as the input to the remainder of our systems. The AU activation detection system uses GentleBoost feature selection and a Support Vector Machine (SVM) classifier to find which AUs were present in an expression. Temporal dynamics of active AUs are recognised by a hybrid GentleBoost-SVM-Hidden Markov model classifier. The system is capable of analysing 23 out of 27 existing AUs with high accuracy. The main contributions of the work presented in this thesis are the following: we have created a method for fully automatic AU analysis with state-of-the-art recognition results. We have proposed for the first time a method for recognition of the four temporal phases of an AU. We have build the largest comprehensive database of facial expressions to date. We also present for the first time in the literature two studies for automatic distinction between posed and spontaneous expressions
    corecore