423 research outputs found

    The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories

    Get PDF
    We study Euler–Poincaré systems (i.e., the Lagrangian analogue of Lie–Poisson Hamiltonian systems) defined on semidirect product Lie algebras. We first give a derivation of the Euler–Poincaré equations for a parameter dependent Lagrangian by using a variational principle of Lagrange d'Alembert type. Then we derive an abstract Kelvin–Noether theorem for these equations. We also explore their relation with the theory of Lie–Poisson Hamiltonian systems defined on the dual of a semidirect product Lie algebra. The Legendre transformation in such cases is often not invertible; thus, it does not produce a corresponding Euler–Poincaré system on that Lie algebra. We avoid this potential difficulty by developing the theory of Euler–Poincaré systems entirely within the Lagrangian framework. We apply the general theory to a number of known examples, including the heavy top, ideal compressible fluids and MHD. We also use this framework to derive higher dimensional Camassa–Holm equations, which have many potentially interesting analytical properties. These equations are Euler–Poincaré equations for geodesics on diffeomorphism groups (in the sense of the Arnold program) but where the metric is H^1 rather thanL^2

    A computer scientist's reconstruction of quantum theory

    Full text link
    The rather unintuitive nature of quantum theory has led numerous people to develop sets of (physically motivated) principles that can be used to derive quantum mechanics from the ground up, in order to better understand where the structure of quantum systems comes from. From a computer scientist's perspective we would like to study quantum theory in a way that allows interesting transformations and compositions of systems and that also includes infinite-dimensional datatypes. Here we present such a compositional reconstruction of quantum theory that includes infinite-dimensional systems. This reconstruction is noteworthy for three reasons: it is only one of a few that includes no restrictions on the dimension of a system; it allows for both classical, quantum, and mixed systems; and it makes no a priori reference to the structure of the real (or complex) numbers. This last point is possible because we frame our results in the language of category theory, specifically the categorical framework of effectus theory.Comment: 42 page

    Geometric, Variational Discretization of Continuum Theories

    Full text link
    This study derives geometric, variational discretizations of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of fluid dynamics, which views solutions to the governing equations for perfect fluid flow as geodesics on the group of volume-preserving diffeomorphisms of the fluid domain. Inspired by this framework, we construct a finite-dimensional approximation to the diffeomorphism group and its Lie algebra, thereby permitting a variational temporal discretization of geodesics on the spatially discretized diffeomorphism group. The extension to MHD and complex fluid flow is then made through an appeal to the theory of Euler-Poincar\'{e} systems with advection, which provides a generalization of the variational formulation of ideal fluid flow to fluids with one or more advected parameters. Upon deriving a family of structured integrators for these systems, we test their performance via a numerical implementation of the update schemes on a cartesian grid. Among the hallmarks of these new numerical methods are exact preservation of momenta arising from symmetries, automatic satisfaction of solenoidal constraints on vector fields, good long-term energy behavior, robustness with respect to the spatial and temporal resolution of the discretization, and applicability to irregular meshes

    States on pseudo-effect algebras with general comparability

    Get PDF

    Affine symmetry in mechanics of collective and internal modes. Part I. Classical models

    Full text link
    Discussed is a model of collective and internal degrees of freedom with kinematics based on affine group and its subgroups. The main novelty in comparison with the previous attempts of this kind is that it is not only kinematics but also dynamics that is affinely-invariant. The relationship with the dynamics of integrable one-dimensional lattices is discussed. It is shown that affinely-invariant geodetic models may encode the dynamics of something like elastic vibrations

    Geometric and energy-aware decomposition of the Navier-Stokes equations: A port-Hamiltonian approach

    Get PDF
    A port-Hamiltonian model for compressible Newtonian fluid dynamics is presented in entirely coordinate-independent geometric fashion. This is achieved by use of tensor-valued differential forms that allow to describe describe the interconnection of the power preserving structure which underlies the motion of perfect fluids to a dissipative port which encodes Newtonian constitutive relations of shear and bulk stresses. The relevant diffusion and the boundary terms characterizing the Navier-Stokes equations on a general Riemannian manifold arise naturally from the proposed construction.Comment: This is a preprint submitted to the journal of Physics of Fluids. Please do not CITE this version, but only the published manuscrip
    • …
    corecore