2 research outputs found

    Carrier-Sense Multiple Access for Heterogeneous Wireless Networks Using Deep Reinforcement Learning

    Full text link
    This paper investigates a new class of carrier-sense multiple access (CSMA) protocols that employ deep reinforcement learning (DRL) techniques for heterogeneous wireless networking, referred to as carrier-sense deep-reinforcement learning multiple access (CS-DLMA). Existing CSMA protocols, such as the medium access control (MAC) of WiFi, are designed for a homogeneous network environment in which all nodes adopt the same protocol. Such protocols suffer from severe performance degradation in a heterogeneous environment where there are nodes adopting other MAC protocols. This paper shows that DRL techniques can be used to design efficient MAC protocols for heterogeneous networking. In particular, in a heterogeneous environment with nodes adopting different MAC protocols (e.g., CS-DLMA, TDMA, and ALOHA), a CS-DLMA node can learn to maximize the sum throughput of all nodes. Furthermore, compared with WiFi's CSMA, CS-DLMA can achieve both higher sum throughput and individual throughputs when coexisting with other MAC protocols. Last but not least, a salient feature of CS-DLMA is that it does not need to know the operating mechanisms of the co-existing MACs. Neither does it need to know the number of nodes using these other MACs.Comment: 8 page

    Non-Uniform Time-Step Deep Q-Network for Carrier-Sense Multiple Access in Heterogeneous Wireless Networks

    Full text link
    This paper investigates a new class of carrier-sense multiple access (CSMA) protocols that employ deep reinforcement learning (DRL) techniques, referred to as carrier-sense deep-reinforcement learning multiple access (CS-DLMA). The goal of CS-DLMA is to enable efficient and equitable spectrum sharing among a group of co-located heterogeneous wireless networks. Existing CSMA protocols, such as the medium access control (MAC) of WiFi, are designed for a homogeneous network in which all nodes adopt the same protocol. Such protocols suffer from severe performance degradation in a heterogeneous environment where there are nodes adopting other MAC protocols. CS-DLMA aims to circumvent this problem by making use of DRL. In particular, this paper adopts alpha-fairness as the general objective of CS-DLMA. With alpha-fairness, CS-DLMA can achieve a range of different objectives when coexisting with other MACs by changing the value of alpha. A salient feature of CS-DLMA is that it can achieve these objectives without knowing the coexisting MACs through a learning process based on DRL. The underpinning DRL technique in CS-DLMA is deep Q-network (DQN). However, the conventional DQN algorithms are not suitable for CS-DLMA due to their uniform time-step assumption. In CSMA protocols, time steps are non-uniform in that the time duration required for carrier sensing is smaller than the duration of data transmission. This paper introduces a non-uniform time-step formulation of DQN to address this issue. Our simulation results show that CS-DLMA can achieve the general alpha-fairness objective when coexisting with TDMA, ALOHA, and WiFi protocols by adjusting its own transmission strategy. Interestingly, we also find that CS-DLMA is more Pareto efficient than other CSMA protocols when coexisting with WiFi.Comment: 14 pages, 11 figure
    corecore