1,468,046 research outputs found

    Molecular Dynamics Simulation of Chemical Vapor Deposition of Amorphous Carbon: Dependence on H/C Ratio of Source Gas

    Full text link
    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas.Comment: accepted by Jpn. J. Appl. Phys. (2008

    Shortcut biological nitrogen removal (SBNR) in microbial fuel cells (MFCs)

    Get PDF
    Microbial Fuel Cells (MFCs) represent nowadays a promising technology for the treatment of industrial wastewater. In this work the Shortcut Nitritation/Denitritation process in H-type MFC was investigated. The cell was fed by sodium acetate and fumaric acid, as organic carbon source, and ammonium sulphate, sodium nitrite and sodium nitrate as nitrogen source. Anaerobic digestion supernatant (digestate) was used as bacterial source. Batch tests were performed at a TOC/N ratio of 0.35, and Total Organic Carbon (TOC), pH and Open Circuit Voltage (OCV) were daily monitored. High organic carbon removal (up to 85%) in short time (within 6 days) were achieved. The nitritation proved to be independent of organic carbon amount and composition: an ammonium content reduction of about 45% was observed. Regarding the denitritation step, an almost quantitative removal of nitrite and nitrate was observed when fumaric acid was used as a carbon source

    Bacteriophages as a model for studying carbon regulation in aquatic system

    Get PDF
    The interconversion of carbon in organic, inorganic and refractory carbon is still beyond the grasp of present environmentalists. The bacteria and their phages, being the most abundant constituents of the aquatic environment, represent an ideal model for studing carbon regulation in the aquatic system. The refractory dissolved organic carbon (DOC), a recently coined terminology from the microbe-driven conversion of bioavailable organic carbon into difficult-to-digest refractory DOC by microbial carbon pump (MCP), is suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that about 95% of organic carbon is in the form of refractory DOC, which is the largest pool of organic matter in the ocean. The refractory DOC is supposed to be the major factor in the global carbon cycle whose source is not yet well understood. A key element of the carbon cycle is the microbial conversion of dissolved organic carbon into inedible forms. The time studies of phage-host interaction under control conditions reveal their impact on the total carbon content of the source and their interconversion among organic, inorganic and other forms of carbon with respect to control source. The TOC- analysis statistics stipulate an increase in inorganic carbon content by 15-25 percent in the sample with phage as compared to the sample without phage. The results signify a 60-70 fold increase in inorganic carbon content in sample with phage, whereas, 50-55 fold in the case of sample without phages as compared with control. This increase in inorganic carbon content may be due to lysis of the host cell releasing its cellular constituents and utilization of carbon constituent for phage assembly and development. It also proves the role of phages in regulating the carbon flow in aquatic systems like oceans, where their concentration outnumbered other species

    Proteomics of Carbon Fixation Energy Sources in Halothiobacillus neapolitanus

    Get PDF
    Through the use of proteomics, it was uncovered that the autotrophic, aerobic purple sulfur bacterium Halothiobacillus neapolitanus displays changes in cellular levels of portions of its carbon dioxide uptake and fixation mechanisms upon switch from bicarbonate to CO2(g) as carbon source. This includes an increase in level of a heterodimeric bicarbonate transporter along with a potential switch between form I and form II of RubisCO. Additional changes are seen in several sulfur oxidation pathways, which may indicate a link between sulfur oxidation pathways as an energy source and carbon uptake/fixation mechanisms

    A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors

    Full text link
    We performed a comprehensive scaling study of Schottky barrier carbon nanotube transistors using self-consistent, atomistic scale simulations. We restrict our attention to Schottky barrier carbon nanotube FETs whose metal source/drain is attached to an intrinsic carbon nanotube channel. Ambipolar conduction is found to be an important factor that must be carefully considered in device design, especially when the gate oxide is thin. The channel length scaling limit imposed by source-drain tunneling is found to be between 5nm and 10nm, depending on the off-current specification. Using a large diameter tube increases the on-current, but it also increases the leakage current. Our study of gate dielectric scaling shows that the charge on the nanotube can play an important role above threshold.Comment: 26 pages, 8 figure

    Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India

    Get PDF
    This study gives an insight into the source of organic carbon and nitrogen in the Godavari river and its tributaries, the yield of organic carbon from the catchment, seasonal variability in their concentration and the ultimate flux of organic and inorganic carbon into the Bay of Bengal. Particulate organic carbon/particulate organic nitrogen (POC/PON or C/N) ratios revealed that the dominant source of organic matter in the high season is from the soil (C/N = 8–14), while in the rest of the seasons, the river-derived (in situ) phytoplankton is the major source (C/N = l–8). Amount of organic materials carried from the lower catchment and flood plains to the oceans during the high season are 3 to 91 times higher than in the moderate and low seasons. Large-scale erosion and deforestation in the catchment has led to higher net yield of organic carbon in the Godavari catchment when compared to other major world rivers. The total flux of POC, and dissolved inorganic carbon (DIC) from the Godavari river to the Bay of Bengal is estimated as 756 · 109 and 2520 · 109 g yr1, respectively. About 22% of POC is lost in the main channel because of oxidation of labile organic matter, entrapment of organic material behind dams/sedimentation along flood plains and river channel; the DIC fluxes as a function of alkalinity are conservative throughout the river channel. Finally, the C/N ratios (12) of the ultimate fluxes of particulate organic carbon suggest the dominance of refractory/ stable soil organic matter that could eventually get buried in the coastal sediments on a geological time scale

    Graphite ionization vacuum gauge

    Get PDF
    Triode gauge with electron source, electron collector, and positive ion collector made from either graphite or carbon material extends low-pressure ranges of existing gauges by changing only materials used in construction. Advantages of graphite gauge stem from physical properties of graphite (or carbon)

    The first-order effect of Holocene Northern Peatlands on global carbon cycle dynamics

    Get PDF
    Given the fact that the estimated present-day carbon storage of Northern Peatlands (NP) is about 300–500 petagram (PgC, 1 petagram = 1015 gram), and the NP has been subject to a slow but persistent growth over the Holocene epoch, it is desirable to include the NP in studies of Holocene carbon cycle dynamics. Here we use an Earth system Model of Intermediate Complexity to study the first-order effect of NP on global carbon cycle dynamics in the Holocene. We prescribe the reconstructed NP growth based on data obtained from numerous sites (located in Western Siberia, North America, and Finland) where peat accumulation records have been developed. Using an inverse method, we demonstrate that the long-term debates over potential source and/or sink of terrestrial ecosystem in the Holocene are clarified by using an inverse method, and our results suggest that the primary carbon source for the changes (sinks) of atmospheric and terrestrial carbon is the ocean, presumably, due to the deep ocean sedimentation pump (the so-called alkalinity pump). Our paper here complements ref. 1 by sensitivity tests using modified boundary conditions

    One-carbon metabolism in cancer

    Get PDF
    Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism
    corecore