14,156 research outputs found

    Preparation of tantalum carbide films by reaction of electrolytic carbon coating with the tantalum substrate

    Get PDF
    This article demonstrates that coatings of tantalum carbide can be obtained by electrodeposition of carbon in molten fluorides on a tantalum substrate as an alternative to the CVD process. The structural characteristics of the carbon deposited by the electrolytic route lead to a high reactivity of this element towards a tantalum cathode to produce tantalum carbide. Mutual reactivity was shown to be enhanced if tantalum plate is replaced by an electrodeposited layer of tantalum, where the fine microstructure provides a catalytic effec

    XAFS analyses of molten metal fluorides

    Get PDF
    X-ray absorption fine structure studies of molten metal fluorides containing the materials related to nuclear engineering are intensively summarized. By using XAFS spectra data of divalent and trivalent cation metal fluorides in molten state which have been collected by authors’ group for a few years, local structure have been extracted and discussed systematically in conjunction with other spectroscopic studies and numerical calculations. In molten divalent fluorides, tetrahedral coordination of fluorides around a cation is predominant. In the case of pure molten trivalent fluorides, structure with more than 6-coordination has been suggested in some cases, but octahedral coordination structure is much stabilized at heavier rare earth metal fluorides. By mixing with alkali metal fluorides, it is a general trend that inter-ionic distances keep constant, but coordination number of fluorides decreases. In experimental chapter, all the details of sample preparation, furnace installation, X-ray optics setups and data analyses procedures are explained. Finally, future expectations of XAFS technique are also suggested

    Silicon recovery from silicon-iron alloys by electrorefining in molten fluorides

    Get PDF
    Electrorefining of a silicon-iron material (Si-4.7at%Fe) in molten NaF-KF at 850°C has been investigated in view of recovering pure Si, using electrochemical techniques, SEM-EDS and ICP-AES analyses. The selective electrochemical dissolution of Si was evidenced. Electrorefining runs led to a maximum Si recovery of 80% of the initial Si contained in the material, in the form of a dense deposit at the cathode, with very high current efficiencies. The Si purity has been examined and no Fe was detected by ICP-AES analysis: the recovered Si purity is thus assumed to be higher than 99.99%

    Friction properties of fluorinated carbons

    Get PDF
    In boundary lubrication regime, friction reduction and antiwear processes are associated to the presence of additives in the lubricating oils or greases. These processes are due to the formation of protective tribofilms resulting from chemical reactions between the additives and the sliding surfaces, in the physico-chemical conditions of the sliding contact. Conventional antiwear additives mainly consist of transition metal organo phosphate or thiophosphates which present a remarkable efficiency in the case of contacts between ferrous alloys. In the case of non reacting surfaces, these additives become inactive. Recently developped lubrication strategies consist in the use of dispersion in oils of nano additives able to build the protective tribofilm in the sliding contact without reaction with the surfaces. Carbon fluorinated phases, due to their lamellar structure and their high chemical stability even at relatively high temperature (400°C) represent interesting candidates as lubricant nano-additives subjected to present friction reduction, anti wear and anti corrosion actions. This work presents the tribologic behaviour of some carbon fluorinated derivatives such as graphite fluorides, fluorinated carbon nanofibers, fluorinated carbon nanodiscs and fluorinated carbon blacks. The influence, on the tribologic performances, of the structure of the initial carbon phases, of the fluorination rate (0<F/C<1) and the structure of the fluorinated compounds is discussed

    Co-reduction of aluminium and lanthanide ions in molten fluorides : application to cerium and samarium extraction from nuclear waste

    Get PDF
    This work concerns the method of co-reduction process with aluminium ions in LiF–CaF2 medium (79–21 mol.%) on tungsten electrode for cerium and samarium extraction. Electrochemical techniques such as cyclic and square wave voltammetries, and potentiostatic electrolyses were used to study the co-reduction of CeF3 and SmF3 with AlF3. For each of these elements, specific peaks of Al–Ce and Al–Sm alloys formationwere observed by voltammetry aswell as peaks of pure cerium and aluminium, and pure samarium and aluminium respectively. The difference of potential measured between the solvent reduction and the alloy formation suggests expecting an extraction efficiency of 99.99% of each lanthanide by the process. Different intermetallic compounds were obtained for different potentiostatic electrolysis and were characterised by Scanning Electron Microscopy with EDS probe. The validity of the process was verified by carrying out cerium and samarium extractions in the form of Al–Ln alloy; the extraction efficiency was 99.5% for Ce(III) and 99.4% for Sm(III)

    Fluoroacidity evaluation in molten salts

    Get PDF
    The fluoroacidity of several alkaline fluoride media was studied by monitoring the concentration of electroactive species which is decreasing versus time due to a gas species release, such as silicon fluorides, as indicated by the reaction: SiF(4+x)x- = SiF4(g) + x F- This article relates the Si(IV) reaction study to define a relative fluoroacidity scale by studying the silicon ions stability in different melts. Electrochemical techniques allow the measurement of SiF4+xx- concentration evolution and thus the reaction rate constant to be calculated at different temperatures and for several fluoride media. The article shows that the free F- content depends on the fluoride mixture and that the rate values are correlated with the fluoroacidity allowing a qualitative estimation. Then a fluoride solvents fluoroacidity scale was proposed, scaling the different eutectic melts from basic melt to acidic one: NaF-KF < LiF-KF < NaF-MgF2 < NaF-CaF2 < LiF-NaF < LiF < LiF-CaF2

    Investigations of Zr(IV) in LiF-CaF2: stability with oxide ions and electroreduction pathway on inert and reactive electrodes

    Get PDF
    In this work, a detailed electrochemical study of the molten LiF-CaF2-ZrF4 system is provided in the 810-920°C temperature range, allowing the determination of the reduction potential, the diffusion coefficient and the reduction mechanism of dissolved Zr(IV) on an inert Ta electrode. Addition of CaO in the molten salt is shown to cause Zr(IV) precipitation into a mixture of solid compounds, most likely ZrO2 and ZrO1.3F1.4. Underpotential deposition of Zr on Cu and Ni electrodes is also evidenced

    On the use of electrochemical techniques to monitor free oxide content in molten fluoride media

    Get PDF
    The electrochemical behaviour of oxide ions has been studied in fluoride melts(LiF/NaF eutectic) by cyclic voltammetry, square wave voltammetry and chronopotentiometry. The purpose is to determine whether these techniques can be used for titration of free oxide ions (O2-) in molten fluorides released by lithium oxide additions. Cyclic voltammetry is shown to be unsuitable for this purpose due to oxygen bubbling disturbing the oxidation peak, while square wave voltammetry is far more appropriate because the observed signal is a well defined oxidation peak with a height proportional to the oxide content. Thus, the present work is focused on a strategy of oxide ions titration by square wave voltammetry. In addition, this work allows assessing that the electrochemical reduction of oxide ions proceeds by diffusion of these species, and the O2- diffusion coefficient is estimated by chronopotentiometry

    Anodic dissolution of metals in oxide-free cryolite melts

    Get PDF
    The anodic behavior of metals in molten cryolite-alumina melts has been investigated mostly for use as inert anodes for the Hall-Héroult process. In the present work, gold, platinum, palladium, copper, tungsten, nickel, cobalt and iron metal electrodes were anodically polarized in an oxide-free cryolite melt (11%wt. excess AlF3 ; 5%wt. CaF2) at 1273 K. The aim of the experiments was to characterize the oxidation reactions of the metals occurring without the effect of oxygen-containing dissolved species. The anodic dissolution of each metal was demonstrated, and electrochemical reactions were assigned using reversible potential calculation. The relative stability of metals as well as the possibility of generating pure fluorine is discussed
    corecore