15 research outputs found

    Capturing Topology in Graph Pattern Matching

    Get PDF
    Graph pattern matching is often defined in terms of subgraph isomorphism, an NP-complete problem. To lower its complexity, various extensions of graph simulation have been considered instead. These extensions allow pattern matching to be conducted in cubic-time. However, they fall short of capturing the topology of data graphs, i.e., graphs may have a structure drastically different from pattern graphs they match, and the matches found are often too large to understand and analyze. To rectify these problems, this paper proposes a notion of strong simulation, a revision of graph simulation, for graph pattern matching. (1) We identify a set of criteria for preserving the topology of graphs matched. We show that strong simulation preserves the topology of data graphs and finds a bounded number of matches. (2) We show that strong simulation retains the same complexity as earlier extensions of simulation, by providing a cubic-time algorithm for computing strong simulation. (3) We present the locality property of strong simulation, which allows us to effectively conduct pattern matching on distributed graphs. (4) We experimentally verify the effectiveness and efficiency of these algorithms, using real-life data and synthetic data.Comment: VLDB201

    Investigative Simulation: Towards Utilizing Graph Pattern Matching for Investigative Search

    Full text link
    This paper proposes the use of graph pattern matching for investigative graph search, which is the process of searching for and prioritizing persons of interest who may exhibit part or all of a pattern of suspicious behaviors or connections. While there are a variety of applications, our principal motivation is to aid law enforcement in the detection of homegrown violent extremists. We introduce investigative simulation, which consists of several necessary extensions to the existing dual simulation graph pattern matching scheme in order to make it appropriate for intelligence analysts and law enforcement officials. Specifically, we impose a categorical label structure on nodes consistent with the nature of indicators in investigations, as well as prune or complete search results to ensure sensibility and usefulness of partial matches to analysts. Lastly, we introduce a natural top-k ranking scheme that can help analysts prioritize investigative efforts. We demonstrate performance of investigative simulation on a real-world large dataset.Comment: 8 pages, 6 figures. Paper to appear in the Fosint-SI 2016 conference proceedings in conjunction with the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining ASONAM 201
    corecore