3 research outputs found

    A new three-dimensional sliding mode guidance law variation with finite time convergence

    Get PDF
    This paper develops a new three dimensional (3D) guidance law which guarantees the interception of manoeuvring targets in a finite time. The new guidance law accepts the concept that nullifying the line-of-sight (LOS) rate guarantees the interception of the target and its derivation is based on finite time sliding mode guidance. By using a 3D kinematic equation set constructed in a rotating coordinate system, the proposed guidance law alleviates an issue of general 3D guidance caused by the cross coupling effect between pitch and yaw planes. In theoretical analysis, finite time convergence of the new guidance law is proved and compared with that of a practical sliding mode guidance law. Characteristics such as energy consumption and convergence boundary layer are also theoretically analysed. Simulation results demonstrate that the new guidance law effectively intercepts manoeuvring targets in a finite time and analysis results are valid

    Performance of 3D PPN against arbitrarily maneuvering target for homing phase

    Get PDF
    The performance analysis of the 3-D pure proportional navigation (PPN) guidance law was traditionally conducted by considering the cross-coupling effect of two independent 2-D PPN laws in the pitch and yaw planes. This could increase the complexity of the analysis and lead to conservative analysis results, especially when the target has maneuverability. To mitigate this issue, this article theoretically analyzes the performance of 3-D PPN directly on a rotating engagement plane using a Lyapunov-like approach. Considering practical issues, the analysis includes not only capturability, but also upper-bounds of heading error, line-of-sight rate, commanded acceleration, and closing speed. The analysis results obtained are also demonstrated by using numerical simulation examples. Compared to the previous studies providing the least conservative results, the analysis procedure is significantly simplified and the results are proven to be more practical and less conservativ

    Capture Region of a GIPN Guidance Law for Missile and Target with Bounded Maneuverability

    No full text
    [[abstract]]In this paper, a novel method is used to analyze the capture area of three-dimensional general ideal proportional navigation (GIPN) guidance laws. Using a line-of-sight (LOS) fixed natural coordinate and three modified polar variables (MPVs), the expression of relative dynamics between target and missile becomes simple, and no trigonometric functions are involved, which makes possible the analysis of the capture region when both target and missile are subject to bounded maneuverability. It can be shown that the determination of the desired capture area requires only the first two of the MPVs no matter if the maneuverability of missile and target are bounded or not. For the case of unbounded missile acceleration and known target acceleration, the capture region can be found analytically, while for the other cases, the capture region can be obtained graphically in a two-dimensional phase plane. The boundaries of these capture regions are characterized by the stable and unstable manifolds of related equilibrium points, which can only be determined numerically in general at this moment. The results of this work indicate that knowing the target acceleration and utilizing larger navigation coefficients increase the area of the capture region, which agrees with known results in literature.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
    corecore