97 research outputs found

    Asymmetric Compute-and-Forward with CSIT

    Get PDF
    We present a modified compute-and-forward scheme which utilizes Channel State Information at the Transmitters (CSIT) in a natural way. The modified scheme allows different users to have different coding rates, and use CSIT to achieve larger rate region. This idea is applicable to all systems which use the compute-and-forward technique and can be arbitrarily better than the regular scheme in some settings.Comment: in International Zurich Seminar on Communications, 2014; minor update on example

    The Capacity Region of the Restricted Two-Way Relay Channel with Any Deterministic Uplink

    Full text link
    This paper considers the two-way relay channel (TWRC) where two users communicate via a relay. For the restricted TWRC where the uplink from the users to the relay is any deterministic function and the downlink from the relay to the users is any arbitrary channel, the capacity region is obtained. The TWRC considered is restricted in the sense that each user can only transmit a function of its message.Comment: author's final version (accepted and to appear in IEEE Communications Letters

    The Degrees of Freedom of the MIMO Y-channel

    Full text link
    The degrees of freedom (DoF) of the MIMO Y-channel, a multi-way communication network consisting of 3 users and a relay, are characterized for arbitrary number of antennas. The converse is provided by cut-set bounds and novel genie-aided bounds. The achievability is shown by a scheme that uses beamforming to establish network coding on-the-fly at the relay in the uplink, and zero-forcing pre-coding in the downlink. It is shown that the network has min{2M_2+2M_3,M_1+M_2+M_3,2N} DoF, where M_j and N represent the number of antennas at user j and the relay, respectively. Thus, in the extreme case where M_1+M_2+M_3 dominates the DoF expression and is smaller than N, the network has the same DoF as the MAC between the 3 users and the relay. In this case, a decode and forward strategy is optimal. In the other extreme where 2N dominates, the DoF of the network is twice that of the aforementioned MAC, and hence network coding is necessary. As a byproduct of this work, it is shown that channel output feedback from the relay to the users has no impact on the DoF of this channel.Comment: 5 pages, 4 figures, ISIT 201

    The Capacity Region of Restricted Multi-Way Relay Channels with Deterministic Uplinks

    Full text link
    This paper considers the multi-way relay channel (MWRC) where multiple users exchange messages via a single relay. The capacity region is derived for a special class of MWRCs where (i) the uplink and the downlink are separated in the sense that there is no direct user-to-user links, (ii) the channel is restricted in the sense that each user's transmitted channel symbols can depend on only its own message, but not on its received channel symbols, and (iii) the uplink is any deterministic function.Comment: Author's final version (to be presented at ISIT 2012

    On Achievable Rate Regions of the Asymmetric AWGN Two-Way Relay Channel

    Full text link
    This paper investigates the additive white Gaussian noise two-way relay channel, where two users exchange messages through a relay. Asymmetrical channels are considered where the users can transmit data at different rates and at different power levels. We modify and improve existing coding schemes to obtain three new achievable rate regions. Comparing four downlink-optimal coding schemes, we show that the scheme that gives the best sum-rate performance is (i) complete-decode-forward, when both users transmit at low signal-to-noise ratio (SNR); (ii) functional-decode-forward with nested lattice codes, when both users transmit at high SNR; (iii) functional-decode-forward with rate splitting and time-division multiplexing, when one user transmits at low SNR and another user at medium--high SNR.Comment: to be presented at ISIT 201
    • …
    corecore