682 research outputs found

    Incremental Relaying for the Gaussian Interference Channel with a Degraded Broadcasting Relay

    Full text link
    This paper studies incremental relay strategies for a two-user Gaussian relay-interference channel with an in-band-reception and out-of-band-transmission relay, where the link between the relay and the two receivers is modelled as a degraded broadcast channel. It is shown that generalized hash-and-forward (GHF) can achieve the capacity region of this channel to within a constant number of bits in a certain weak relay regime, where the transmitter-to-relay link gains are not unboundedly stronger than the interference links between the transmitters and the receivers. The GHF relaying strategy is ideally suited for the broadcasting relay because it can be implemented in an incremental fashion, i.e., the relay message to one receiver is a degraded version of the message to the other receiver. A generalized-degree-of-freedom (GDoF) analysis in the high signal-to-noise ratio (SNR) regime reveals that in the symmetric channel setting, each common relay bit can improve the sum rate roughly by either one bit or two bits asymptotically depending on the operating regime, and the rate gain can be interpreted as coming solely from the improvement of the common message rates, or alternatively in the very weak interference regime as solely coming from the rate improvement of the private messages. Further, this paper studies an asymmetric case in which the relay has only a single single link to one of the destinations. It is shown that with only one relay-destination link, the approximate capacity region can be established for a larger regime of channel parameters. Further, from a GDoF point of view, the sum-capacity gain due to the relay can now be thought as coming from either signal relaying only, or interference forwarding only.Comment: To appear in IEEE Trans. on Inf. Theor

    Cooperative Transmission for a Vector Gaussian Parallel Relay Network

    Full text link
    In this paper, we consider a parallel relay network where two relays cooperatively help a source transmit to a destination. We assume the source and the destination nodes are equipped with multiple antennas. Three basic schemes and their achievable rates are studied: Decode-and-Forward (DF), Amplify-and-Forward (AF), and Compress-and-Forward (CF). For the DF scheme, the source transmits two private signals, one for each relay, where dirty paper coding (DPC) is used between the two private streams, and a common signal for both relays. The relays make efficient use of the common information to introduce a proper amount of correlation in the transmission to the destination. We show that the DF scheme achieves the capacity under certain conditions. We also show that the CF scheme is asymptotically optimal in the high relay power limit, regardless of channel ranks. It turns out that the AF scheme also achieves the asymptotic optimality but only when the relays-to-destination channel is full rank. The relative advantages of the three schemes are discussed with numerical results.Comment: 35 pages, 10 figures, submitted to IEEE Transactions on Information Theor

    Coalitions in Cooperative Wireless Networks

    Full text link
    Cooperation between rational users in wireless networks is studied using coalitional game theory. Using the rate achieved by a user as its utility, it is shown that the stable coalition structure, i.e., set of coalitions from which users have no incentives to defect, depends on the manner in which the rate gains are apportioned among the cooperating users. Specifically, the stability of the grand coalition (GC), i.e., the coalition of all users, is studied. Transmitter and receiver cooperation in an interference channel (IC) are studied as illustrative cooperative models to determine the stable coalitions for both flexible (transferable) and fixed (non-transferable) apportioning schemes. It is shown that the stable sum-rate optimal coalition when only receivers cooperate by jointly decoding (transferable) is the GC. The stability of the GC depends on the detector when receivers cooperate using linear multiuser detectors (non-transferable). Transmitter cooperation is studied assuming that all receivers cooperate perfectly and that users outside a coalition act as jammers. The stability of the GC is studied for both the case of perfectly cooperating transmitters (transferrable) and under a partial decode-and-forward strategy (non-transferable). In both cases, the stability is shown to depend on the channel gains and the transmitter jamming strengths.Comment: To appear in the IEEE Journal on Selected Areas in Communication, Special Issue on Game Theory in Communication Systems, 200
    • …
    corecore