10,076 research outputs found

    Transport Protocols in Cognitive Radio Networks: A Survey

    Full text link
    Cognitive radio networks (CRNs) have emerged as a promising solution to enhance spectrum utilization by using unused or less used spectrum in radio environments. The basic idea of CRNs is to allow secondary users (SUs) access to licensed spectrum, under the condition that the interference perceived by the primary users (PUs) is minimal. In CRNs, the channel availability is uncertainty due to the existence of PUs, resulting in intermittent communication. Transmission control protocol (TCP) performance may significantly degrade in such conditions. To address the challenges, some transport protocols have been proposed for reliable transmission in CRNs. In this paper we survey the state-of-the-art transport protocols for CRNs. We firstly highlight the unique aspects of CRNs, and describe the challenges of transport protocols in terms of PU behavior, spectrum sensing, spectrum changing and TCP mechanism itself over CRNs. Then, we provide a summary and comparison of existing transport protocols for CRNs. Finally, we discuss several open issues and research challenges. To the best of our knowledge, our work is the first survey on transport protocols for CRNs.Comment: to appear in KSII Transactions on Internet and Information System

    Performance Evaluation of QoS Parameters in Dynamic Spectrum Sharing for Heterogeneous Wireless Communication Networks

    Full text link
    Cognitive radio nodes have been proposed as means to improve the spectrum utilization. It reuses the spectrum of a primary service provider under the condition that the primary service provider services are not harmfully interrupted. A cognitive radio can sense its operating environment's conditions and it is able to reconfigure itself and to communicate with other counterparts based on the status of the environment and also the requirements of the user to meet the optimal communication conditions and to keep quality of service (QoS) as high as possible. The efficiency of spectrum sharing can be improved by minimizing the interference. The Utility function that captures the cooperative behavior to minimize the interference and the satisfaction to improve the throughput is investigated. The dynamic spectrum sharing algorithm can maintain the quality of service (QoS) of each network while the effective spectrum utilisation is improved under a fluctuation traffic environment when the available spectrum is limited.Comment: IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012 ISSN (Online): 1694-0814 http://www.IJCSI.or

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial

    On Green Energy Powered Cognitive Radio Networks

    Full text link
    Green energy powered cognitive radio (CR) network is capable of liberating the wireless access networks from spectral and energy constraints. The limitation of the spectrum is alleviated by exploiting cognitive networking in which wireless nodes sense and utilize the spare spectrum for data communications, while dependence on the traditional unsustainable energy is assuaged by adopting energy harvesting (EH) through which green energy can be harnessed to power wireless networks. Green energy powered CR increases the network availability and thus extends emerging network applications. Designing green CR networks is challenging. It requires not only the optimization of dynamic spectrum access but also the optimal utilization of green energy. This paper surveys the energy efficient cognitive radio techniques and the optimization of green energy powered wireless networks. Existing works on energy aware spectrum sensing, management, and sharing are investigated in detail. The state of the art of the energy efficient CR based wireless access network is discussed in various aspects such as relay and cooperative radio and small cells. Envisioning green energy as an important energy resource in the future, network performance highly depends on the dynamics of the available spectrum and green energy. As compared with the traditional energy source, the arrival rate of green energy, which highly depends on the environment of the energy harvesters, is rather random and intermittent. To optimize and adapt the usage of green energy according to the opportunistic spectrum availability, we discuss research challenges in designing cognitive radio networks which are powered by energy harvesters

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    Throughput Enhancement of Multicarrier Cognitive M2M Networks: Universal-Filtered OFDM Systems

    Full text link
    We consider a cognitive radio network consisting of a primary cellular system and a secondary cognitive machine-to-machine (M2M) system, and study the throughput enhancement problem of the latter system employing universal-filtered orthogonal frequency division multiplexing (UF-OFDM) modulation. The downlink transmission capacity of the cognitive M2M system is thereby maximized, while keeping the interference introduced to the primary users (PUs) below the pre-specified threshold, under total transmit power budget of the secondary base station (SBS). The performance of UF-OFDM based CR system is compared to the performances of OFDM-based and filter bank multicarrier (FBMC)-based CR systems. We also propose a near-optimal resource allocation method separating the subband and power allocation. The solution is less complex compared to optimization of the original combinatorial problem. We present numerical results that show that for given interference thresholds of the PUs and maximum transmit power limit of the SBS, the UF-OFDM based CR system exhibits intermediary performance in terms of achievable capacity compared to OFDM and FBMC-based CR systems. Interestingly, for a certain degree of robustness of the PUs, the UF-OFDM performs equally well as FBMC. Furthermore, the percentage rate-gain of UF-OFDM based CR system increases by a large amount when UF-OFDM modulation with lower sidelobes ripple is employed. Numerical results also show that the proposed throughput enhancing method despite having lower computational complexity compared to the optimal solution achieves near-optimal performance

    Performance Analysis of Wireless Network with Opportunistic Spectrum Sharing via Cognitive Radio Nodes

    Full text link
    Cognitive radio (CR) is found to be an emerging key for efficient spectrum utilization. In this paper, spectrum sharing among service providers with the help of cognitive radio has been investigated. The technique of spectrum sharing among service providers to share the licensed spectrum of licensed service providers in a dynamic manner is considered. The performance of the wireless network with opportunistic spectrum sharing techniques is analyzed. Thus, the spectral utilization and efficiency of sensing is increased, the interference is minimized, and the call blockage is reduced.Comment: 10 Pages, Journal of Electronic Science and Technology, Vol. 10, No. 4, December 2012. arXiv admin note: text overlap with arXiv:1210.3435; and with arXiv:1201.1964 by other authors without attributio

    All Technologies Work Together for Good: A Glance to Future Mobile Networks

    Full text link
    The astounding capacity requirements of 5G have motivated researchers to investigate the feasibility of many potential technologies, such as massive multiple-input multiple-output, millimeter wave, full-duplex, non-orthogonal multiple access, carrier aggregation, cognitive radio, and network ultra-densification. The benefits and challenges of these technologies have been thoroughly studied either individually or in a combination of two or three. It is not clear, however, whether all potential technologies operating together lead to fulfilling the requirements posed by 5G. This paper explores the potential benefits and challenges when all technologies coexist in an ultra-dense cellular environment. The sum rate of the network is investigated with respect to the increase in the number of small-cells and results show the capacity gains achieved by the coexistence.Comment: Accepted for publication in IEEE Wireless Communication, Special Issue-5G mmWave Small Cell Networks: Architecture, Self-Organization and Managemen

    Green Sensing and Access: Energy-Throughput Tradeoffs in Cognitive Networking

    Full text link
    Limited spectrum resources and dramatic growth of high data rate applications have motivated opportunistic spectrum access utilizing the promising concept of cognitive networks. Although this concept has emerged primarily to enhance spectrum utilization and to allow the coexistence of heterogeneous network technologies, the importance of energy consumption imposes additional challenges, because energy consumption and communication performance can be at odds. In this paper, the approaches for energy efficient spectrum sensing and spectrum handoff, fundamental building blocks of cognitive networks is investigated. The tradeoff between energy consumption and throughput, under local as well as under cooperative sensing are characterized, and what further aspects need to be investigated to achieve energy efficient cognitive operation under various application requirements are discussed.Comment: to be published in IEEE Communications Magazine, 8 pages, 1 table, 6 figures. arXiv admin note: substantial text overlap with arXiv:1312.004

    Small Cell Deployments: Recent Advances and Research Challenges

    Full text link
    This paper summarizes the outcomes of the 5th International Workshop on Femtocells held at King's College London, UK, on the 13th and 14th of February, 2012.The workshop hosted cutting-edge presentations about the latest advances and research challenges in small cell roll-outs and heterogeneous cellular networks. This paper provides some cutting edge information on the developments of Self-Organizing Networks (SON) for small cell deployments, as well as related standardization supports on issues such as carrier aggregation (CA), Multiple-Input-Multiple-Output (MIMO) techniques, and enhanced Inter-Cell Interference Coordination (eICIC), etc. Furthermore, some recent efforts on issues such as energy-saving as well as Machine Learning (ML) techniques on resource allocation and multi-cell cooperation are described. Finally, current developments on simulation tools and small cell deployment scenarios are presented. These topics collectively represent the current trends in small cell deployments.Comment: 19 pages, 22 figure
    • …
    corecore