1,730 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    The Degrees of Freedom of the MIMO Y-channel

    Full text link
    The degrees of freedom (DoF) of the MIMO Y-channel, a multi-way communication network consisting of 3 users and a relay, are characterized for arbitrary number of antennas. The converse is provided by cut-set bounds and novel genie-aided bounds. The achievability is shown by a scheme that uses beamforming to establish network coding on-the-fly at the relay in the uplink, and zero-forcing pre-coding in the downlink. It is shown that the network has min{2M_2+2M_3,M_1+M_2+M_3,2N} DoF, where M_j and N represent the number of antennas at user j and the relay, respectively. Thus, in the extreme case where M_1+M_2+M_3 dominates the DoF expression and is smaller than N, the network has the same DoF as the MAC between the 3 users and the relay. In this case, a decode and forward strategy is optimal. In the other extreme where 2N dominates, the DoF of the network is twice that of the aforementioned MAC, and hence network coding is necessary. As a byproduct of this work, it is shown that channel output feedback from the relay to the users has no impact on the DoF of this channel.Comment: 5 pages, 4 figures, ISIT 201

    The Wiretap Channel with Feedback: Encryption over the Channel

    Full text link
    In this work, the critical role of noisy feedback in enhancing the secrecy capacity of the wiretap channel is established. Unlike previous works, where a noiseless public discussion channel is used for feedback, the feed-forward and feedback signals share the same noisy channel in the present model. Quite interestingly, this noisy feedback model is shown to be more advantageous in the current setting. More specifically, the discrete memoryless modulo-additive channel with a full-duplex destination node is considered first, and it is shown that the judicious use of feedback increases the perfect secrecy capacity to the capacity of the source-destination channel in the absence of the wiretapper. In the achievability scheme, the feedback signal corresponds to a private key, known only to the destination. In the half-duplex scheme, a novel feedback technique that always achieves a positive perfect secrecy rate (even when the source-wiretapper channel is less noisy than the source-destination channel) is proposed. These results hinge on the modulo-additive property of the channel, which is exploited by the destination to perform encryption over the channel without revealing its key to the source. Finally, this scheme is extended to the continuous real valued modulo-Λ\Lambda channel where it is shown that the perfect secrecy capacity with feedback is also equal to the capacity in the absence of the wiretapper.Comment: Submitted to IEEE Transactions on Information Theor

    Nonregenerative MIMO Relaying with Optimal Transmit Antenna Selection

    Full text link
    We derive optimal SNR-based transmit antenna selection rules at the source and relay for the nonregenerative half duplex MIMO relay channel. While antenna selection is a suboptimal form of beamforming, it has the advantage that the optimization is tractable and can be implemented with only a few bits of feedback from the destination to the source and relay. We compare the bit error rate of optimal antenna selection at both the source and relay to other proposed beamforming techniques and propose methods for performing the necessary limited feedback
    • …
    corecore