15,163 research outputs found

    Capacity Bounds for a Class of Diamond Networks

    Full text link
    A class of diamond networks are studied where the broadcast component is modelled by two independent bit-pipes. New upper and low bounds are derived on the capacity which improve previous bounds. The upper bound is in the form of a max-min problem, where the maximization is over a coding distribution and the minimization is over an auxiliary channel. The proof technique generalizes bounding techniques of Ozarow for the Gaussian multiple description problem (1981), and Kang and Liu for the Gaussian diamond network (2011). The bounds are evaluated for a Gaussian multiple access channel (MAC) and the binary adder MAC, and the capacity is found for interesting ranges of the bit-pipe capacities

    The Approximate Capacity of the Gaussian N-Relay Diamond Network

    Full text link
    We consider the Gaussian "diamond" or parallel relay network, in which a source node transmits a message to a destination node with the help of N relays. Even for the symmetric setting, in which the channel gains to the relays are identical and the channel gains from the relays are identical, the capacity of this channel is unknown in general. The best known capacity approximation is up to an additive gap of order N bits and up to a multiplicative gap of order N^2, with both gaps independent of the channel gains. In this paper, we approximate the capacity of the symmetric Gaussian N-relay diamond network up to an additive gap of 1.8 bits and up to a multiplicative gap of a factor 14. Both gaps are independent of the channel gains and, unlike the best previously known result, are also independent of the number of relays N in the network. Achievability is based on bursty amplify-and-forward, showing that this simple scheme is uniformly approximately optimal, both in the low-rate as well as in the high-rate regimes. The upper bound on capacity is based on a careful evaluation of the cut-set bound. We also present approximation results for the asymmetric Gaussian N-relay diamond network. In particular, we show that bursty amplify-and-forward combined with optimal relay selection achieves a rate within a factor O(log^4(N)) of capacity with pre-constant in the order notation independent of the channel gains.Comment: 23 pages, to appear in IEEE Transactions on Information Theor

    Analog network coding in general SNR regime: Performance of a greedy scheme

    Full text link
    The problem of maximum rate achievable with analog network coding for a unicast communication over a layered relay network with directed links is considered. A relay node performing analog network coding scales and forwards the signals received at its input. Recently this problem has been considered under certain assumptions on per node scaling factor and received SNR. Previously, we established a result that allows us to characterize the optimal performance of analog network coding in network scenarios beyond those that can be analyzed using the approaches based on such assumptions. The key contribution of this work is a scheme to greedily compute a lower bound to the optimal rate achievable with analog network coding in the general layered networks. This scheme allows for exact computation of the optimal achievable rates in a wider class of layered networks than those that can be addressed using existing approaches. For the specific case of Gaussian N-relay diamond network, to the best of our knowledge, the proposed scheme provides the first exact characterization of the optimal rate achievable with analog network coding. Further, for general layered networks, our scheme allows us to compute optimal rates within a constant gap from the cut-set upper bound asymptotically in the source power.Comment: 11 pages, 5 figures. Fixed an issue with the notation in the statement and proof of Lemma 1. arXiv admin note: substantial text overlap with arXiv:1204.2150 and arXiv:1202.037
    • …
    corecore