337 research outputs found

    Capacity bounds for MIMO microwave backhaul links affected by phase noise

    Get PDF
    We present bounds and a closed-form high-SNR expression for the capacity of multiple-antenna systems affected by Wiener phase noise. Our results are developed for the scenario where a single oscillator drives all the radio-frequency circuitries at each transceiver (common oscillator setup), the input signal is subject to a peak-power constraint, and the channel matrix is deterministic. This scenario is relevant for line-of-sight multiple-antenna microwave backhaul links with sufficiently small antenna spacing at the transceivers. For the 2 by 2 multiple-antenna case, for a Wiener phase-noise process with standard deviation equal to 6 degrees, and at the medium/high SNR values at which microwave backhaul links operate, the upper bound reported in the paper exhibits a 3 dB gap from a lower bound obtained using 64-QAM. Furthermore, in this SNR regime the closed-form high-SNR expression is shown to be accurate.Comment: 10 pages, 2 figures, to appear in IEEE Transactions on Communication

    On the multiplexing gain of MIMO Microwave backhaul links affected by Phase Noise

    Get PDF
    We consider a multiple-input multiple-output (MIMO) AWGN channel affected by phase noise. Focusing on the 2 × 2 case, we show that no MIMO multiplexing gain is to be expected when the phase-noise processes at each antenna are independent, memoryless in time, and with uniform marginal distribution over [0,2π] (strong phase noise), and when the transmit signal is isotropically distributed on the real plane. The scenario of independent phase-noise processes across antennas is relevant for microwave backhaul links operating in the 20–40 GHz range

    Capacity of SIMO and MISO Phase-Noise Channels with Common/Separate Oscillators

    Full text link
    In multiple antenna systems, phase noise due to instabilities of the radio-frequency (RF) oscillators, acts differently depending on whether the RF circuitries connected to each antenna are driven by separate (independent) local oscillators (SLO) or by a common local oscillator (CLO). In this paper, we investigate the high-SNR capacity of single-input multiple-output (SIMO) and multiple-output single-input (MISO) phase-noise channels for both the CLO and the SLO configurations. Our results show that the first-order term in the high-SNR capacity expansion is the same for all scenarios (SIMO/MISO and SLO/CLO), and equal to 0.5ln(ρ)0.5\ln (\rho), where ρ\rho stands for the SNR. On the contrary, the second-order term, which we refer to as phase-noise number, turns out to be scenario-dependent. For the SIMO case, the SLO configuration provides a diversity gain, resulting in a larger phase-noise number than for the CLO configuration. For the case of Wiener phase noise, a diversity gain of at least 0.5ln(M)0.5 \ln(M) can be achieved, where MM is the number of receive antennas. For the MISO, the CLO configuration yields a higher phase-noise number than the SLO configuration. This is because with the CLO configuration one can obtain a coherent-combining gain through maximum ratio transmission (a.k.a. conjugate beamforming). This gain is unattainable with the SLO configuration.Comment: IEEE Transactions on Communication

    Analysis and Design of Line of Sight MIMO transmission systems

    Get PDF
    A cost-effective solution to the problem of guaranteeing backhaul connectivity in mobile cellular networks is the use of point-to-point microwave links in the Q-Band and E-Band. The always increasing rate in mobile data traffic makes these microwave radio links a potential bottleneck in the deployment of high-throughput cellular networks. A fundamental way to characterize the impact of phase noise on the throughput of these systems is to study their Shannon capacity. Unfortunately, the capacity of the phase-noise channel is not known in closed-form, even for simple channel models. The effect of phase noise in telecommunication systems is more evident in presence of multiple antennas at transmitter and receiver because of the overlapping of phase noise contribution in receivers. We propose a simulated-based tool to compute a lower bound to channel capacity for SISO and MIMO systems in presence of phase noise with one oscillator shared among the antennas per side and we give a non asymptotic expression of an upper bound to capacity always for SISO and MIMO channels. Finally we present a low complex phase detector based on combination of Phase Locked Loop (PLL) exploiting the decisions made by a turbo decoder. The aim of this work is showing a way to bound the channel capacity for single antenna and multiple antennas channels impaired by phase noise generated by instabilities in oscillators driving all the transceivers, and compare the performance of the proposed phase detector to those theoretical limits

    On the Capacity of the Wiener Phase-Noise Channel: Bounds and Capacity Achieving Distributions

    Full text link
    In this paper, the capacity of the additive white Gaussian noise (AWGN) channel, affected by time-varying Wiener phase noise is investigated. Tight upper and lower bounds on the capacity of this channel are developed. The upper bound is obtained by using the duality approach, and considering a specific distribution over the output of the channel. In order to lower-bound the capacity, first a family of capacity-achieving input distributions is found by solving a functional optimization of the channel mutual information. Then, lower bounds on the capacity are obtained by drawing samples from the proposed distributions through Monte-Carlo simulations. The proposed capacity-achieving input distributions are circularly symmetric, non-Gaussian, and the input amplitudes are correlated over time. The evaluated capacity bounds are tight for a wide range of signal-to-noise-ratio (SNR) values, and thus they can be used to quantify the capacity. Specifically, the bounds follow the well-known AWGN capacity curve at low SNR, while at high SNR, they coincide with the high-SNR capacity result available in the literature for the phase-noise channel.Comment: IEEE Transactions on Communications, 201

    Time-varying phase noise and channel estimation in MIMO systems

    Get PDF
    Performance of high speed communication systems is negatively affected by oscillator phase noise (PN). In this paper joint estimation of channel gains and Wiener PN in multi-input multi-output (MIMO) systems is analyzed. The signal model for the estimation problem is outlined in detail. In order to reduce overhead, a low complexity data-aided least-squares (LS) estimator for jointly obtaining the channel gains and PN parameters is derived. In order to track PN processes over a frame, a new decision-directed extended Kalman filter (EKF) is proposed. Numerical results show that the proposed LS and EKF based PN estimator performances are close to the CRLB and simulation results indicate that by employing the proposed estimators the bit-error rate (BER) performance of a MIMO system can be significantly improved in the presence of PN
    corecore