10,533 research outputs found

    A Unified Framework for the Ergodic Capacity of Spectrum Sharing Cognitive Radio Systems

    Full text link
    We consider a spectrum sharing communication scenario in which a primary and a secondary users are communicating, simultaneously, with their respective destinations using the same frequency carrier. Both optimal power profile and ergodic capacity are derived for fading channels, under an average transmit power and an instantaneous interference outage constraints. Unlike previous studies, we assume that the secondary user has a noisy version of the cross link and the secondary link Channel State Information (CSI). After deriving the capacity in this case, we provide an ergodic capacity generalization, through a unified expression, that encompasses several previously studied spectrum sharing settings. In addition, we provide an asymptotic capacity analysis at high and low signal-to-noise ratio (SNR). Numerical results, applied for independent Rayleigh fading channels, show that at low SNR regime, only the secondary channel estimation matters with no effect of the cross link on the capacity; whereas at high SNR regime, the capacity is rather driven by the cross link CSI. Furthermore, a practical on-off power allocation scheme is proposed and is shown, through numerical results, to achieve the full capacity at high and low SNRComment: 12 pages, 8 figures, To appear IEEE Transactions on Wireless Communications 201

    Effective Capacity in Wireless Networks: A Comprehensive Survey

    Full text link
    Low latency applications, such as multimedia communications, autonomous vehicles, and Tactile Internet are the emerging applications for next-generation wireless networks, such as 5th generation (5G) mobile networks. Existing physical-layer channel models, however, do not explicitly consider quality-of-service (QoS) aware related parameters under specific delay constraints. To investigate the performance of low-latency applications in future networks, a new mathematical framework is needed. Effective capacity (EC), which is a link-layer channel model with QoS-awareness, can be used to investigate the performance of wireless networks under certain statistical delay constraints. In this paper, we provide a comprehensive survey on existing works, that use the EC model in various wireless networks. We summarize the work related to EC for different networks such as cognitive radio networks (CRNs), cellular networks, relay networks, adhoc networks, and mesh networks. We explore five case studies encompassing EC operation with different design and architectural requirements. We survey various delay-sensitive applications such as voice and video with their EC analysis under certain delay constraints. We finally present the future research directions with open issues covering EC maximization

    On the Performance of Adaptive Modulation in Cognitive Radio Networks

    Full text link
    We study the performance of cognitive radio networks (CRNs) when incorporating adaptive modulation at the physical layer. Three types of CRNs are considered, namely opportunistic spectrum access (OSA), spectrum sharing (SS) and sensing-based SS. We obtain closed-form expressions for the average spectral efficiency achieved at the secondary network and the optimal power allocation for both continuous and discrete rate types of adaptive modulation assuming perfect channel state information. The obtained numerical results show the achievable performance gain in terms of average spectral efficiency and the impact on power allocation when adaptive modulation is implemented at the physical layer that is due to the effect of the cut-off level that is determined from the received signal-to-noise ratio for each CRN type. The performance assessment is taking place for different target bit error rate values and fading regions, thereby providing useful performance insights for various possible implementations.Comment: arXiv admin note: text overlap with arXiv:1210.691

    Adaptive Modulation in OSA-based Cognitive Radio Networks

    Full text link
    Opportunistic spectrum access is based on channel state information and can lead to important performance improvements for the underlying communication systems. On the other hand adaptive modulation is also based on channel state information and can achieve increased transmission rates in fading channels. In this work we propose the combination of adaptive modulation with opportunistic spectrum access and we study the anticipated effects on the performance of wireless communication systems in terms of achieved spectral efficiency and power consumption.Comment: accepted conferenc

    Random Aerial Beamforming for Underlay Cognitive Radio with Exposed Secondary Users

    Full text link
    In this paper, we introduce the exposed secondary users problem in underlay cognitive radio systems, where both the secondary-to-primary and primary-to-secondary channels have a Line-of-Sight (LoS) component. Based on a Rician model for the LoS channels, we show, analytically and numerically, that LoS interference hinders the achievable secondary user capacity when interference constraints are imposed at the primary user receiver. This is caused by the poor dynamic range of the interference channels fluctuations when a dominant LoS component exists. In order to improve the capacity of such system, we propose the usage of an Electronically Steerable Parasitic Array Radiator (ESPAR) antennas at the secondary terminals. An ESPAR antenna involves a single RF chain and has a reconfigurable radiation pattern that is controlled by assigning arbitrary weights to M orthonormal basis radiation patterns via altering a set of reactive loads. By viewing the orthonormal patterns as multiple virtual dumb antennas, we randomly vary their weights over time creating artificial channel fluctuations that can perfectly eliminate the undesired impact of LoS interference. This scheme is termed as Random Aerial Beamforming (RAB), and is well suited for compact and low cost mobile terminals as it uses a single RF chain. Moreover, we investigate the exposed secondary users problem in a multiuser setting, showing that LoS interference hinders multiuser interference diversity and affects the growth rate of the SU capacity as a function of the number of users. Using RAB, we show that LoS interference can actually be exploited to improve multiuser diversity via opportunistic nulling

    Spectrum-Sharing Multi-Hop Cooperative Relaying: Performance Analysis Using Extreme Value Theory

    Full text link
    In spectrum-sharing cognitive radio systems, the transmit power of secondary users has to be very low due to the restrictions on the tolerable interference power dictated by primary users. In order to extend the coverage area of secondary transmission and reduce the corresponding interference region, multi-hop amplify-and-forward (AF) relaying can be implemented for the communication between secondary transmitters and receivers. This paper addresses the fundamental limits of this promising technique. Specifically, the effect of major system parameters on the performance of spectrum-sharing multi-hop AF relaying is investigated. To this end, the optimal transmit power allocation at each node along the multi-hop link is firstly addressed. Then, the extreme value theory is exploited to study the limiting distribution functions of the lower and upper bounds on the end-to-end signal-to-noise ratio of the relaying path. Our results disclose that the diversity gain of the multi-hop link is always unity, regardless of the number of relaying hops. On the other hand, the coding gain is proportional to the water level of the optimal water-filling power allocation at secondary transmitter and to the large-scale path-loss ratio of the desired link to the interference link at each hop, yet is inversely proportional to the accumulated noise, i.e. the product of the number of relays and the noise variance, at the destination. These important findings do not only shed light on the performance of the secondary transmissions but also benefit system designers improving the efficiency of future spectrum-sharing cooperative systems.Comment: 12 pages, 6 figure

    Ergodic Sum-Rate Maximization for Fading Cognitive Multiple Access Channels without Successive Interference Cancellation

    Full text link
    In this paper, the ergodic sum-rate of a fading cognitive multiple access channel (C-MAC) is studied, where a secondary network (SN) with multiple secondary users (SUs) transmitting to a secondary base station (SBS) shares the spectrum band with a primary user (PU). An interference power constraint (IPC) is imposed on the SN to protect the PU. Under such a constraint and the individual transmit power constraint (TPC) imposed on each SU, we investigate the power allocation strategies to maximize the ergodic sum-rate of a fading C-MAC without successive interference cancellation (SIC). In particular, this paper considers two types of constraints: (1) average TPC and average IPC, (2) peak TPC and peak IPC. For the first case, it is proved that the optimal power allocation is dynamic time-division multiple-access (D-TDMA), which is exactly the same as the optimal power allocation to maximize the ergodic sum-rate of the fading C-MAC with SIC under the same constraints. For the second case, it is proved that the optimal solution must be at the extreme points of the feasible region. It is shown that D-TDMA is optimal with high probability when the number of SUs is large. Besides, we show that, when the SUs can be sorted in a certain order, an algorithm with linear complexity can be used to find the optimal power allocation.Comment: Under Revie

    Spectrum Sharing in Cognitive Radio with Quantized Channel Information

    Full text link
    We consider a wideband spectrum sharing system where a secondary user can share a number of orthogonal frequency bands where each band is licensed to an individual primary user. We address the problem of optimum secondary transmit power allocation for its ergodic capacity maximization subject to an average sum (across the bands) transmit power constraint and individual average interference constraints on the primary users. The major contribution of our work lies in considering quantized channel state information (CSI)(for the vector channel space consisting of all secondary-to-secondary and secondary-to-primary channels) at the secondary transmitter. It is assumed that a band manager or a cognitive radio service provider has access to the full CSI information from the secondary and primary receivers and designs (offline) an optimal power codebook based on the statistical information (channel distributions) of the channels and feeds back the index of the codebook to the secondary transmitter for every channel realization in real-time, via a delay-free noiseless limited feedback channel. A modified Generalized Lloyds-type algorithm (GLA) is designed for deriving the optimal power codebook. An approximate quantized power allocation (AQPA) algorithm is also presented, that performs very close to its GLA based counterpart for large number of feedback bits and is significantly faster. We also present an extension of the modified GLA based quantized power codebook design algorithm for the case when the feedback channel is noisy. Numerical studies illustrate that with only 3-4 bits of feedback, the modified GLA based algorithms provide secondary ergodic capacity very close to that achieved by full CSI and with only as little as 4 bits of feedback, AQPA provides a comparable performance, thus making it an attractive choice for practical implementation.Comment: 30 pages, 8 figure

    Optimal Power Allocation for Secrecy Fading Channels Under Spectrum-Sharing Constraints

    Full text link
    In the spectrum-sharing technology, a secondary user may utilize the primary user's licensed band as long as its interference to the primary user is below a tolerable value. In this paper, we consider a scenario in which a secondary user is operating in the presence of both a primary user and an eavesdropper. Hence, the secondary user has both interference limitations and security considerations. In such a scenario, we study the secrecy capacity limits of opportunistic spectrum-sharing channels in fading environments and investigate the optimal power allocation for the secondary user under average and peak received power constraints at the primary user with global channel side information (CSI). Also, in the absence of the eavesdropper's CSI, we study optimal power allocation under an average power constraint and propose a suboptimal on/off power control method

    Ergodic Capacity of Cognitive Radio under Imperfect Channel State Information

    Full text link
    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel state information (CSI) of the secondary link, but knows only the statistics and an estimated version of the secondary transmitter-primary receiver (ST-PR) link, is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels (with continuous probability density function) under average and peak transmit-power constraints and with respect to two different interference constraints: an interference outage constraint and a signal-to-interference outage constraint. When applied to Rayleigh fading channels, our results show, for instance, that the interference constraint is harmful at high-power regime in the sense that the capacity does not increase with the power, whereas at low-power regime, it has a marginal impact and no-interference performance corresponding to the ergodic capacity under average or peak transmit power constraint in absence of the primary user, may be achieved.Comment: To appear in IEEE TVT. 12 pages, 8 figures, 1 table. Matlab codes to reproduce results are available upon request. Please contact one of the authors for this purpos
    • …
    corecore