2,688 research outputs found

    Approximate Sum-Capacity of K-user Cognitive Interference Channels with Cumulative Message Sharing

    Full text link
    This paper considers the K user cognitive interference channel with one primary and K-1 secondary/cognitive transmitters with a cumulative message sharing structure, i.e cognitive transmitter i∈[2:K]i\in [2:K] knows non-causally all messages of the users with index less than i. We propose a computable outer bound valid for any memoryless channel. We first evaluate the sum-rate outer bound for the high- SNR linear deterministic approximation of the Gaussian noise channel. This is shown to be capacity for the 3-user channel with arbitrary channel gains and the sum-capacity for the symmetric K-user channel. Interestingly. for the K user channel having only the K th cognitive know all the other messages is sufficient to achieve capacity i.e cognition at transmitter 2 to K-1 is not needed. Next the sum capacity of the symmetric Gaussian noise channel is characterized to within a constant additive and multiplicative gap. The proposed achievable scheme for the additive gap is based on Dirty paper coding and can be thought of as a MIMO-broadcast scheme where only one encoding order is possible due to the message sharing structure. As opposed to other multiuser interference channel models, a single scheme suffices for both the weak and strong interference regimes. With this scheme the generalized degrees of freedom (gDOF) is shown to be a function of K, in contrast to the non cognitive case and the broadcast channel case. Interestingly, it is show that as the number of users grows to infinity the gDoF of the K-user cognitive interference channel with cumulative message sharing tends to the gDoF of a broadcast channel with a K-antenna transmitter and K single-antenna receivers. The analytical additive additive and multiplicative gaps are a function of the number of users. Numerical evaluations of inner and outer bounds show that the actual gap is less than the analytical one.Comment: Journa

    Capacity of All Nine Models of Channel Output Feedback for the Two-user Interference Channel

    Full text link
    In this paper, we study the impact of different channel output feedback architectures on the capacity of the two-user interference channel. For a two-user interference channel, a feedback link can exist between receivers and transmitters in 9 canonical architectures (see Fig. 2), ranging from only one feedback link to four feedback links. We derive the exact capacity region for the symmetric deterministic interference channel and the constant-gap capacity region for the symmetric Gaussian interference channel for all of the 9 architectures. We show that for a linear deterministic symmetric interference channel, in the weak interference regime, all models of feedback, except the one, which has only one of the receivers feeding back to its own transmitter, have the identical capacity region. When only one of the receivers feeds back to its own transmitter, the capacity region is a strict subset of the capacity region of the rest of the feedback models in the weak interference regime. However, the sum-capacity of all feedback models is identical in the weak interference regime. Moreover, in the strong interference regime all models of feedback with at least one of the receivers feeding back to its own transmitter have the identical sum-capacity. For the Gaussian interference channel, the results of the linear deterministic model follow, where capacity is replaced with approximate capacity.Comment: submitted to IEEE Transactions on Information Theory, results improved by deriving capacity region of all 9 canonical feedback models in two-user interference channe

    Lattice Coding for the Two-way Two-relay Channel

    Full text link
    Lattice coding techniques may be used to derive achievable rate regions which outperform known independent, identically distributed (i.i.d.) random codes in multi-source relay networks and in particular the two-way relay channel. Gains stem from the ability to decode the sum of codewords (or messages) using lattice codes at higher rates than possible with i.i.d. random codes. Here we develop a novel lattice coding scheme for the Two-way Two-relay Channel: 1 2 3 4, where Node 1 and 4 simultaneously communicate with each other through two relay nodes 2 and 3. Each node only communicates with its neighboring nodes. The key technical contribution is the lattice-based achievability strategy, where each relay is able to remove the noise while decoding the sum of several signals in a Block Markov strategy and then re-encode the signal into another lattice codeword using the so-called "Re-distribution Transform". This allows nodes further down the line to again decode sums of lattice codewords. This transform is central to improving the achievable rates, and ensures that the messages traveling in each of the two directions fully utilize the relay's power, even under asymmetric channel conditions. All decoders are lattice decoders and only a single nested lattice codebook pair is needed. The symmetric rate achieved by the proposed lattice coding scheme is within 0.5 log 3 bit/Hz/s of the symmetric rate capacity.Comment: submitted to IEEE Transactions on Information Theory on December 3, 201

    Compute-and-Forward: Harnessing Interference through Structured Codes

    Get PDF
    Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.Comment: IEEE Trans. Info Theory, to appear. 23 pages, 13 figure

    On the Capacity Region of the Two-user Interference Channel with a Cognitive Relay

    Full text link
    This paper considers a variation of the classical two-user interference channel where the communication of two interfering source-destination pairs is aided by an additional node that has a priori knowledge of the messages to be transmitted, which is referred to as the it cognitive relay. For this Interference Channel with a Cognitive Relay (ICCR) In particular, for the class of injective semi-deterministic ICCRs, a sum-rate upper bound is derived for the general memoryless ICCR and further tightened for the Linear Deterministic Approximation (LDA) of the Gaussian noise channel at high SNR, which disregards the noise and focuses on the interaction among the users' signals. The capacity region of the symmetric LDA is completely characterized except for the regime of moderately weak interference and weak links from the CR to the destinations. The insights gained from the analysis of the LDA are then translated back to the symmetric Gaussian noise channel (GICCR). For the symmetric GICCR, an approximate characterization (to within a constant gap) of the capacity region is provided for a parameter regime where capacity was previously unknown. The approximately optimal scheme suggests that message cognition at a relay is beneficial for interference management as it enables simultaneous over the air neutralization of the interference at both destinations

    Degraded Broadcast Diamond Channels with Non-Causal State Information at the Source

    Full text link
    A state-dependent degraded broadcast diamond channel is studied where the source-to-relays cut is modeled with two noiseless, finite-capacity digital links with a degraded broadcasting structure, while the relays-to-destination cut is a general multiple access channel controlled by a random state. It is assumed that the source has non-causal channel state information and the relays have no state information. Under this model, first, the capacity is characterized for the case where the destination has state information, i.e., has access to the state sequence. It is demonstrated that in this case, a joint message and state transmission scheme via binning is optimal. Next, the case where the destination does not have state information, i.e., the case with state information at the source only, is considered. For this scenario, lower and upper bounds on the capacity are derived for the general discrete memoryless model. Achievable rates are then computed for the case in which the relays-to-destination cut is affected by an additive Gaussian state. Numerical results are provided that illuminate the performance advantages that can be accrued by leveraging non-causal state information at the source.Comment: Submitted to IEEE Transactions on Information Theory, Feb. 201
    • …
    corecore