14,710 research outputs found

    Capacity Gain from Two-Transmitter and Two-Receiver Cooperation

    Full text link
    Capacity improvement from transmitter and receiver cooperation is investigated in a two-transmitter, two-receiver network with phase fading and full channel state information available at all terminals. The transmitters cooperate by first exchanging messages over an orthogonal transmitter cooperation channel, then encoding jointly with dirty paper coding. The receivers cooperate by using Wyner-Ziv compress-and-forward over an analogous orthogonal receiver cooperation channel. To account for the cost of cooperation, the allocation of network power and bandwidth among the data and cooperation channels is studied. It is shown that transmitter cooperation outperforms receiver cooperation and improves capacity over non-cooperative transmission under most operating conditions when the cooperation channel is strong. However, a weak cooperation channel limits the transmitter cooperation rate; in this case receiver cooperation is more advantageous. Transmitter-and-receiver cooperation offers sizable additional capacity gain over transmitter-only cooperation at low SNR, whereas at high SNR transmitter cooperation alone captures most of the cooperative capacity improvement.Comment: Accepted for publication in IEEE Transactions on Information Theor

    The Impact of CSI and Power Allocation on Relay Channel Capacity and Cooperation Strategies

    Full text link
    Capacity gains from transmitter and receiver cooperation are compared in a relay network where the cooperating nodes are close together. Under quasi-static phase fading, when all nodes have equal average transmit power along with full channel state information (CSI), it is shown that transmitter cooperation outperforms receiver cooperation, whereas the opposite is true when power is optimally allocated among the cooperating nodes but only CSI at the receiver (CSIR) is available. When the nodes have equal power with CSIR only, cooperative schemes are shown to offer no capacity improvement over non-cooperation under the same network power constraint. When the system is under optimal power allocation with full CSI, the decode-and-forward transmitter cooperation rate is close to its cut-set capacity upper bound, and outperforms compress-and-forward receiver cooperation. Under fast Rayleigh fading in the high SNR regime, similar conclusions follow. Cooperative systems provide resilience to fading in channel magnitudes; however, capacity becomes more sensitive to power allocation, and the cooperating nodes need to be closer together for the decode-and-forward scheme to be capacity-achieving. Moreover, to realize capacity improvement, full CSI is necessary in transmitter cooperation, while in receiver cooperation optimal power allocation is essential.Comment: Accepted for publication in IEEE Transactions on Wireless Communication

    Cooperative Compute-and-Forward

    Full text link
    We examine the benefits of user cooperation under compute-and-forward. Much like in network coding, receivers in a compute-and-forward network recover finite-field linear combinations of transmitters' messages. Recovery is enabled by linear codes: transmitters map messages to a linear codebook, and receivers attempt to decode the incoming superposition of signals to an integer combination of codewords. However, the achievable computation rates are low if channel gains do not correspond to a suitable linear combination. In response to this challenge, we propose a cooperative approach to compute-and-forward. We devise a lattice-coding approach to block Markov encoding with which we construct a decode-and-forward style computation strategy. Transmitters broadcast lattice codewords, decode each other's messages, and then cooperatively transmit resolution information to aid receivers in decoding the integer combinations. Using our strategy, we show that cooperation offers a significant improvement both in the achievable computation rate and in the diversity-multiplexing tradeoff.Comment: submitted to IEEE Transactions on Information Theor

    Interference Mitigation Through Limited Receiver Cooperation: Symmetric Case

    Full text link
    Interference is a major issue that limits the performance in wireless networks, and cooperation among receivers can help mitigate interference by forming distributed MIMO systems. The rate at which receivers cooperate, however, is limited in most scenarios. How much interference can one bit of receiver cooperation mitigate? In this paper, we study the two-user Gaussian interference channel with conferencing decoders to answer this question in a simple setting. We characterize the fundamental gain from cooperation: at high SNR, when INR is below 50% of SNR in dB scale, one-bit cooperation per direction buys roughly one-bit gain per user until full receiver cooperation performance is reached, while when INR is between 67% and 200% of SNR in dB scale, one-bit cooperation per direction buys roughly half-bit gain per user. The conclusion is drawn based on the approximate characterization of the symmetric capacity in the symmetric set-up. We propose strategies achieving the symmetric capacity universally to within 3 bits. The strategy consists of two parts: (1) the transmission scheme, where superposition encoding with a simple power split is employed, and (2) the cooperative protocol, where quantize-binning is used for relaying.Comment: To appear in IEEE Information Theory Workshop, Taormina, October 2009. Final versio

    Beacon-Assisted Spectrum Access with Cooperative Cognitive Transmitter and Receiver

    Full text link
    Spectrum access is an important function of cognitive radios for detecting and utilizing spectrum holes without interfering with the legacy systems. In this paper we propose novel cooperative communication models and show how deploying such cooperations between a pair of secondary transmitter and receiver assists them in identifying spectrum opportunities more reliably. These cooperations are facilitated by dynamically and opportunistically assigning one of the secondary users as a relay to assist the other one which results in more efficient spectrum hole detection. Also, we investigate the impact of erroneous detection of spectrum holes and thereof missing communication opportunities on the capacity of the secondary channel. The capacity of the secondary users with interference-avoiding spectrum access is affected by 1) how effectively the availability of vacant spectrum is sensed by the secondary transmitter-receiver pair, and 2) how correlated are the perceptions of the secondary transmitter-receiver pair about network spectral activity. We show that both factors are improved by using the proposed cooperative protocols. One of the proposed protocols requires explicit information exchange in the network. Such information exchange in practice is prone to wireless channel errors (i.e., is imperfect) and costs bandwidth loss. We analyze the effects of such imperfect information exchange on the capacity as well as the effect of bandwidth cost on the achievable throughput. The protocols are also extended to multiuser secondary networks.Comment: 36 pages, 6 figures, To appear in IEEE Transaction on Mobile Computin
    • …
    corecore