45,594 research outputs found

    Capacity Achieving Code Constructions for Two Classes of (d,k) Constraints

    Full text link
    In this paper, we present two low complexity algorithms that achieve capacity for the noiseless (d,k) constrained channel when k=2d+1, or when k-d+1 is not prime. The first algorithm, called symbol sliding, is a generalized version of the bit flipping algorithm introduced by Aviran et al. [1]. In addition to achieving capacity for (d,2d+1) constraints, it comes close to capacity in other cases. The second algorithm is based on interleaving, and is a generalized version of the bit stuffing algorithm introduced by Bender and Wolf [2]. This method uses fewer than k-d biased bit streams to achieve capacity for (d,k) constraints with k-d+1 not prime. In particular, the encoder for (d,d+2^m-1) constraints, 1\le m<\infty, requires only m biased bit streams.Comment: 16 pages, submitted to the IEEE Transactions on Information Theor

    Achieving Marton's Region for Broadcast Channels Using Polar Codes

    Full text link
    This paper presents polar coding schemes for the 2-user discrete memoryless broadcast channel (DM-BC) which achieve Marton's region with both common and private messages. This is the best achievable rate region known to date, and it is tight for all classes of 2-user DM-BCs whose capacity regions are known. To accomplish this task, we first construct polar codes for both the superposition as well as the binning strategy. By combining these two schemes, we obtain Marton's region with private messages only. Finally, we show how to handle the case of common information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding and decoding complexity and a super-polynomial decay rate of the error probability. We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition and binning schemes. In order to align the polar indices, for both schemes, their solution involves some degradedness constraints that are assumed to hold between the auxiliary random variables and the channel outputs. To remove these constraints, we consider the transmission of kk blocks and employ a chaining construction that guarantees the proper alignment of the polarized indices. The techniques described in this work are quite general, and they can be adopted to many other multi-terminal scenarios whenever there polar indices need to be aligned.Comment: 26 pages, 11 figures, accepted to IEEE Trans. Inform. Theory and presented in part at ISIT'1

    Capacity-Achieving Ensembles of Accumulate-Repeat-Accumulate Codes for the Erasure Channel with Bounded Complexity

    Full text link
    The paper introduces ensembles of accumulate-repeat-accumulate (ARA) codes which asymptotically achieve capacity on the binary erasure channel (BEC) with {\em bounded complexity}, per information bit, of encoding and decoding. It also introduces symmetry properties which play a central role in the construction of capacity-achieving ensembles for the BEC with bounded complexity. The results here improve on the tradeoff between performance and complexity provided by previous constructions of capacity-achieving ensembles of codes defined on graphs. The superiority of ARA codes with moderate to large block length is exemplified by computer simulations which compare their performance with those of previously reported capacity-achieving ensembles of LDPC and IRA codes. The ARA codes also have the advantage of being systematic.Comment: Submitted to IEEE Trans. on Information Theory, December 1st, 2005. Includes 50 pages and 13 figure

    Secure Cooperative Regenerating Codes for Distributed Storage Systems

    Full text link
    Regenerating codes enable trading off repair bandwidth for storage in distributed storage systems (DSS). Due to their distributed nature, these systems are intrinsically susceptible to attacks, and they may also be subject to multiple simultaneous node failures. Cooperative regenerating codes allow bandwidth efficient repair of multiple simultaneous node failures. This paper analyzes storage systems that employ cooperative regenerating codes that are robust to (passive) eavesdroppers. The analysis is divided into two parts, studying both minimum bandwidth and minimum storage cooperative regenerating scenarios. First, the secrecy capacity for minimum bandwidth cooperative regenerating codes is characterized. Second, for minimum storage cooperative regenerating codes, a secure file size upper bound and achievability results are provided. These results establish the secrecy capacity for the minimum storage scenario for certain special cases. In all scenarios, the achievability results correspond to exact repair, and secure file size upper bounds are obtained using min-cut analyses over a suitable secrecy graph representation of DSS. The main achievability argument is based on an appropriate pre-coding of the data to eliminate the information leakage to the eavesdropper
    • …
    corecore