17 research outputs found

    Remote Powering and Data Communication Over a Single Inductive Link for Implantable Medical Devices

    Get PDF
    RÉSUMÉ Les implants médicaux électroniques (Implantable Medical Devices - IMDs) sont notamment utilisés pour restaurer ou améliorer des fonctions perdues de certains organes. Ils sont capables de traiter des complications qui ne peuvent pas être guéries avec des médicaments ou par la chirurgie. Offrant des propriétés et des améliorations curatives sans précédent, les IMDs sont de plus en plus demandés par les médecins et les patients. En 2017, le marché mondial des IMD était évalué à 15,21 milliards de dollars. D’ici 2025, il devrait atteindre 30,42 mil-liards de dollars, soutenu par un taux de croissance annuel de 9,24% selon le nouveau rapport publié par Fior Markets. Cette expansion entraîne une augmentation des exigences pour as-surer des performances supérieures, des fonctionnalités supplémentaires et une durée de vie plus longue. Ces exigences ne peuvent être satisfaites qu’avec des techniques d’alimentation avancées, un débit de données élevé et une électronique miniaturisée robuste. Construire des systèmes capables de fournir toutes ces caractéristiques est l’objectif principal d’un grand nombre de chercheurs. Parmi plusieurs technologies sans fil, le lien inductif, qui consiste en une paire de bobines à couplage magnétique, est la technique sans fil la plus largement utilisée pour le transfert de puissance et de données. Cela est dû à sa simplicité, sa sécurité et sa capacité à transmettre à la fois de la puissance et des données de façon bidirectionnelle. Cependant, il existe encore un certain nombre de défis concernant la mise en œuvre d’un tel système de transfert d’énergie et de données sans fil (Wireless Power and Data Transfer - WPDT system). Un défi majeur est que les exigences pour une efficacité de transfert d’énergie élevée et pour une communication à haut débit sont contradictoires. En fait, la bande passante doit être élargie pour des débits de données élevés, mais réduite pour une transmission efficace de l’énergie. Un autre grand défi consiste à réaliser un démodulateur fonctionnant à haute vitesse avec une mise en œuvre simple et une consommation d’énergie ultra-faible. Dans ce projet, nous proposons et expérimentons un nouveau système WPDT dédié aux IMD permettant une communication à haute vitesse et une alimentation efficace tout en maintenant une faible consommation d’énergie, une petite surface de silicium et une mise en œuvre simple du récepteur. Le système proposé est basé sur un nouveau schéma de modulation appelé "Carrier Width Modulation (CWM)", ainsi que sur des circuits de modulation et de démodulation inédits. La modulation consiste en un coupe-circuit synchronisé du réservoir LC primaire pendant un ou deux cycles en fonction des données transmises.----------ABSTRACT Implantable Medical Devices (IMDs) are electronic implants notably used to restore or en-hance lost organ functions. They may treat complications that cannot be cured with medica-tion or through surgery. O˙ering unprecedented healing properties and enhancements, IMDs are increasingly requested by physicians and patients. In 2017, the worldwide IMD market was valued at USD 15,21 Billion. By 2025, it is expected to attain USD 30.42 Billion sus-tained by a compound annual growth rate of 9.24% according to a recent report published by Fior Markets. This expansion is bringing-up more demand for higher performance, additional features, and longer device lifespan and autonomy. These requirements can only be achieved with advanced power sources, high-data rates, and robust miniaturized electronics. Building systems able to provide all these characteristics is the main goal of many researchers. Among several wireless technologies, the inductive link, which consists of a magnetically-coupled pair of coils, is the most widely used wireless technique for both power and data transfer. This is due to its simplicity, safety, and ability to provide simultaneously both power and bidirectional data transfer to the implant. However there are still a number of challenges regarding the implementation of such Wireless Power and Data Transfer (WPDT) systems. One main challenge is that the requirements for high Power Transfer Eÿciency (PTE) and for high-data rate communication are contra-dictory. In fact, the bandwidth needs to be widened for high data rates, but narrowed for eÿcient power delivery. Another big challenge is to implement a high-speed demodulator with simple implementation and ultra-low power consumption. In this project, we propose and experiment a new WPDT system dedicated to IMDs allow-ing high-speed communication and eÿcient power delivery, while maintaining a low power consumption, small silicon area, and simple implementation of the receiver. The proposed system is based on a new Carrier Width Modulation (CWM) scheme, as well as novel modu-lation and demodulation circuits. The modulation consists of a synchronized opening of the primary LC tank for one or two cycles according to the transmitted data. Unlike conventional modulation techniques, the data rate of the proposed CWM modulation is not limited by the quality factors of the primary and secondary coils. On the other hand, the proposed CWM demodulator allows higher-speed demodulation and simple implementation, unlike conven-tional demodulators for a similar modulation scheme. It also o˙ers a wide range of data rates under any selected frequency from 10 to 31 MHz

    Wireless power and data transmission to high-performance implantable medical devices

    Get PDF
    Novel techniques for high-performance wireless power transmission and data interfacing with implantable medical devices (IMDs) were proposed. Several system- and circuit-level techniques were developed towards the design of a novel wireless data and power transmission link for a multi-channel inductively-powered wireless implantable neural-recording and stimulation system. Such wireless data and power transmission techniques have promising prospects for use in IMDs such as biosensors and neural recording/stimulation devices, neural interfacing experiments in enriched environments, radio-frequency identification (RFID), smartcards, near-field communication (NFC), wireless sensors, and charging mobile devices and electric vehicles. The contributions in wireless power transfer are the development of an RFID-based closed-loop power transmission system, a high-performance 3-coil link with optimal design procedure, circuit-based theoretical foundation for magnetic-resonance-based power transmission using multiple coils, a figure-of-merit for designing high-performance inductive links, a low-power and adaptive power management and data transceiver ASIC to be used as a general-purpose power module for wireless electrophysiology experiments, and a Q-modulated inductive link for automatic load matching. In wireless data transfer, the contributions are the development of a new modulation technique called pulse-delay modulation for low-power and wideband near-field data communication and a pulse-width-modulation impulse-radio ultra-wideband transceiver for low-power and wideband far-field data transmission.Ph.D

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    Remote Powering and Communication of Implantable Biosensors Through Inductive Link

    Get PDF
    Nowadays there is an increasing interest in the field of implantable biosensors. The possibility of real-time monitoring of the human body from inside paves the way to a large number of applications and offers wide opportunities for the future. Within this scenario, the i-IronIC project aims to develop an implantable, low cost, health-care device for real-time monitoring of human metabolites. The contribution of this research work to the i-IronIC project consists of the design and realization of a complete platform to provide power, data communication and remote control to the implantable biosensor. High wearability of the transmitting unit, low invasivity of the implanted electronics, integration of the power management module within the sensor, and a reliable communication protocol with portable devices are the key points of this platform. The power is transmitted to the implanted sensor by exploiting an inductive link. Simulations have been performed to check the effects of several variables on the link performance. These simulations have finally confirmed the possibility to operate in the low megahertz range, where tissue absorption is minimum, even if a miniaturized receiving inductor is used. A wearable patch has been designed to transmit power through the body tissues by driving an external inductor. The same inductive link is used to achieve bidirectional data communication with the implanted device. The patch, named IronIC, is powered by lithium-ion polymer batteries and can be remotely controlled by means of a dedicated Android application running on smartphones and tablets. Long-range communication between the patch and portable devices is performed by means of Bluetooth protocol. Different typologies of receiving inductors have been designed to minimize the size of the implantable device and reduce the discomfort of the patience. Multi-layer, printed spiral inductors and microfabricated spiral inductors have been designed, fabricated and tested. Both the approaches involve a sensibly smaller size, as compared to classic “pancake” inductors used for remote powering. Furthermore, the second solution enables the realization of the receiving inductor directly on the silicon substrate hosting the sensor, thus involving a further miniaturization of the implanted device. An integrated power module has been designed and fabricated in 0.18 μm CMOS technology to perform power management and data communication with the external patch. The circuit, to be merged with the sensor readout circuit, consists of an half-wave voltage rectifier, a low-dropout regulator, an amplitude demodulator and a load modulator. The module receives the power from the implanted inductor and provides a stable voltage to the sensor readout circuit. Finally, the amplitude demodulator and the load modulator enable short-range communication with the patch

    Acoustic power distribution techniques for wireless sensor networks

    Get PDF
    Recent advancements in wireless power transfer technologies can solve several residual problems concerning the maintenance of wireless sensor networks. Among these, air-based acoustic systems are still less exploited, with considerable potential for powering sensor nodes. This thesis aims to understand the significant parameters for acoustic power transfer in air, comprehend the losses, and quantify the limitations in terms of distance, alignment, frequency, and power transfer efficiency. This research outlines the basic concepts and equations overlooking sound wave propagation, system losses, and safety regulations to understand the prospects and limitations of acoustic power transfer. First, a theoretical model was established to define the diffraction and attenuation losses in the system. Different off-the-shelf transducers were experimentally investigated, showing that the FUS-40E transducer is most appropriate for this work. Subsequently, different load-matching techniques are analysed to identify the optimum method to deliver power. The analytical results were experimentally validated, and complex impedance matching increased the bandwidth from 1.5 to 4 and the power transfer efficiency from 0.02% to 0.43%. Subsequently, a detailed 3D profiling of the acoustic system in the far-field region was provided, analysing the receiver sensitivity to disturbances in separation distance, receiver orientation and alignment. The measured effects of misalignment between the transducers are provided as a design graph, correlating the output power as a function of separation distance, offset, loading methods and operating frequency. Finally, a two-stage wireless power network is designed, where energy packets are inductively delivered to a cluster of nodes by a recharge vehicle and later acoustically distributed to devices within the cluster. A novel dynamic recharge scheduling algorithm that combines weighted genetic clustering with nearest neighbour search is developed to jointly minimise vehicle travel distance and power transfer losses. The efficacy and performance of the algorithm are evaluated in simulation using experimentally derived traces that presented 90% throughput for large, dense networks.Open Acces

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Ultrasound data communication system for bioelectronic medicines

    Get PDF
    PhD ThesisThe coming years may see the advent of distributed implantable devices to support bioelectronic medicinal treatments. Such treatments could be complementary and, in some cases, may even prove superior to pharmaceutical treatments for certain chronic disease conditions. Therefore, a significant research effort is being undertaken in the bioelectronics domain. Target conditions include diabetes, inflammatory bowel disease, lupus, and arthritis. Modern active medical implantable devices require communications to transmit information to the outside world or other implantable sub-systems. This can include physiological data, diagnostics, and parameters to optimise the therapeutic protocol. However, the communication scheme can be very challenging especially for deeper devices. Challenges include absorption and scattering by tissue, and the need to ensure there are no undesirable heating effects. Wired connectivity is undesirable and tissue absorption of traditional radio frequency and optical methods mean that ultrasound communications have significant potential in this niche. In this thesis, a reliable and efficient ultrasonic communication telemetry is presented. An omnidirectional transducer has been employed to implement intra body communication inside a model of the human body. A prototype has been implemented to evaluate the system performance in saline and up to 30 distance between the transmitter and receiver. Short pulses sequences with guard intervals have been employed to minimise the multipath effect that leads to an increase in the bit and thus packet error rates with distance. Error detection and correction code have been employed to improve communication at a low signal to noise ratio. The data rate is limited to 0.6 due to the necessary guard intervals. Energy per bit and current consumption for the transmitter and receiver main parts are presented and discussed in terms of battery life. Transmission can be achieved at an energy cost of 642 per bit data packet using on/off power cycling in the electronics

    Low power CMOS IC, biosensor and wireless power transfer techniques for wireless sensor network application

    Get PDF
    The emerging field of wireless sensor network (WSN) is receiving great attention due to the interest in healthcare. Traditional battery-powered devices suffer from large size, weight and secondary replacement surgery after the battery life-time which is often not desired, especially for an implantable application. Thus an energy harvesting method needs to be investigated. In addition to energy harvesting, the sensor network needs to be low power to extend the wireless power transfer distance and meet the regulation on RF power exposed to human tissue (specific absorption ratio). Also, miniature sensor integration is another challenge since most of the commercial sensors have rigid form or have a bulky size. The objective of this thesis is to provide solutions to the aforementioned challenges

    Multi-frequency microwave energy harvesting receivers: theory and applications

    Get PDF
    Mención Internacional en el título de doctorEmissions across the electromagnetic spectrum are not only used for communications, but they can also be used for powering electronic devices. This resource has been made more and more abundant in the last years thanks to the recent deployment of 4G and 5G, and the popularization of broadband wireless networks such as WiFi, including traditional services such as TV and radio broadcasting. In order to take advantage of the energy (currently wasted), rectennas (a rectifier integrated with an antenna) are used. This thesis has the objective of studying these rectifying elements, to reduce or eliminate the use of batteries that are employed in millions of low-power devices and sensor networks planned for deployment in the near future. To do this, a self-supply system in situ is required. This could be achieved with photovoltaics or piezoelectrics, but they require the presence of light or vibration. However, the electromagnetic energy produced by mobile communications, TV base stations and radar is noticeable inside a large coverage area, 24 hours a day. This includes difficult access areas where it is nearly impossible to provide appropriate maintenance to replace batteries. As explained through the thesis, energy harvesting applications have a severe limitation on the available levels of power density to scavenge, constraining the RF-DC power conversion effciencies. Therefore, the amount of DC power to feed a sensor is limited and some techniques must be applied to improve the performance. This thesis proposes an alternative for improving the RF-DC power conversion efficiency based on the multiple-tone scenario (the electromagnetic spectrum). Previous studies have been published about an empirical improvement in the power efficiency when working with high Peak to Average Power Ratio (PAPR) multiple-tone signals, compared to a CW signal with the same average power, although the theoretical proof was not accurate enough. A mathematical model that predicts the expected DC current of the diode when excited with multiple tones is proposed along the thesis, having good agreement with simulations and measurements, demonstrating the good performance of the theoretical model. With this mathematical approach, convergence problems in simulation software can be avoided. This document comprises six chapters and it is organized as follows: In the first chapter a brief introduction on the evolution of wireless power transfer is presented, including all the different approaches that compose it, emphasizing the far-filed non-directional powering or harvesting, which is the topic of this thesis. In addition, an analysis of the state of the art is presented with the most signifficant values of conversion effciency, as well as the main characteristics of various designs. In the second chapter, the performance of the diode is explored theoretically. For very low incident power densities (those present in the environment), the diode works in a non-linear region, where a power effciency improvement is obtained when using high PAPR multiple-tone signal instead of a single tone with the same average power. This fact has been empirically tested but an accurate theoretical model has not been accomplished. Therefore, this chapter deals with this issue, showing a novel mathematical analysis of the diode operation in that region for multiple input tones, varying their relative amplitude and frequency. In Chapter 3, the theoretical analysis is compared with simulations and experiments for multiple input tones with a large resulting PAPR using three different rectifier circuits. To properly compare the results, it is necessary to use an accurate Spice diode model (including parasitics) and an appropriate measurement setup. Otherwise, results will differ due to an inadequate characterization of the non-linear device. This chapter addresses those issues. The analysis shows that the relative frequency and amplitude of multiple simultaneous signals impacts the amount of efficiency improvement. Once the recti er element is studied, Chapter 4 deals with the antenna design, which is part of the rectenna deployment. It is seen that different design criteria must be used when working with a WPT directive beaming application or a non-directive harvesting one, as happens in this thesis. The integration between the antenna and the recti er is analyzed, showing possible alternatives. Finally, a rectenna design is built and tested through indoor and outdoor measurements. An analysis of the electromagnetic spectrum is included to demonstrate the feasibility of the rectenna model. In Chapter 5 a wearable rectenna application is shown, with a broadband 2 to 5 GHz rectenna array, implemented on a cotton shirt. This application allows to collect enough energy to power energy-efficient devices. Different rectenna array sizes were tested at different power densities. The single element is a self-complementary tightly-coupled bow-tie. Simulations and measurements were performed over a phantom and over body tissues taking into account the electrical properties of the torso. The thickness of each layer was varied analyzing its influence in the antenna performance, to check what happens under different body compositions (people with more adipose tissue or on the contrary more brous). Finally, Chapter 6 collects the conclusions of the work shown in this thesis and ideas for future work. Some ideas are proposed about Chapter 2 to reduce the error of the mathematical approach when working in the non-linear region. Also, some possible improvements to the printed antenna of Chapter 5 are included such as adding a dual linear polarization.Las emisiones a lo largo de todo el espectro electromagnético no sólo se pueden utilizar para las comunicaciones, sino que también pueden emplearse para la alimentación de dispositivos electr onicos. Este recurso se ha hecho cada vez más abundante en los ultimos años gracias a los recientes despliegues en telefonía móvil de 4G y 5G y a la popularización de las redes inalámbricas de banda ancha (WiFi), sin olvidar las comunicaciones de difusión ya existentes como la radio o televisión. Para poder aprovechar este recurso (actualmente desaprovechado), se utilizan las llamadas rectenas, que son antenas con un elemento rectificador integrado. Esta tesis tiene por objetivo el estudio de estos elementos rectificadores, para desarrollar aplicaciones capaces de reducir o eliminar el uso de baterías en los millones de dispositivos y redes de sensores de bajo consumo existentes hoy día, mediante el autoabastecimiento de energía. Este proceso podría llevarse a cabo con paneles fotovoltaicos o sistemas piezoeléctricos, pero estos requieren de la presencia continua de la fuente que los origina (vibraciones, horas de sol). Sin embargo, la energía electromagnética producida por las estaciones base, de telefonía o televisión, está presente bajo su zona de cobertura las 24 horas del día, lo cual incluye zonas de difícil acceso, en las que es complicado el recambio o mantenimiento de las baterías. Además, estas emisiones tienen como principal limitación la baja densidad de potencia, obteniéndose valores de eficiencia de conversión RF-DC muy bajos. Esto conlleva que los valores de corriente DC para alimentar al sensor sean muy pequeños, de nA o uA, y por tanto, deben emplearse técnicas para la mejora del rendimiento. Esta tesis propone una alternativa para mejorar la eficiencia de conversión, basada en la probada mejora de eficiencia cuando se trabaja con señales con un Peak to Average Power Ratio (PAPR) grande. Esto se da en escenarios multitonales como puede ser el espectro electromagnético. Esta mejora no ha sido abordada teóricamente con resultados precisos en trabajos previos, por lo que en esta tesis se desarrolla un modelo matemático que predice la componente DC de la corriente del diodo, cuando se excita con múltiples tonos. Los resultados obtenidos han sido validados en el laboratorio, demostrándose la mejora en la eficiencia de conversión y el buen comportamiento del modelo teórico. De esta forma, se pueden agilizar los cálculos cuando no se tiene un software de simulación disponible, o cuando este arroja problemas de convergencia. Esta tesis consta de seis capítulos y está organizada de la siguiente manera: En el primer capítulo se expone una breve introducción sobre la evolución de la transferencia inalámbrica de potencia y sobre las diferentes tecnologías que la componen, haciéndose hincapié en la transferencia de potencia no directiva en campo lejano, puesto que se corresponde a la recolección de la energía electromagnética ambiental. Además, se incluye un análisis del estado del arte con los valores más significativos de eficiencia de conversión, así como las principales características de varios diseños (como por ejemplo la potencia o las bandas de trabajo empleadas). En el segundo capítulo se explora el comportamiento del diodo desde el punto de vista matemático. Bajo densidades de potencia pequeñas, como las presentes en este entorno, el diodo opera en su región no lineal, produciendo un incremento de eficiencia cuando se trabaja con señales con gran PAPR, respecto a un tono con la misma potencia media. Este hecho ha sido probado empíricamente pero ningún modelo teórico preciso ha sido realizado. En este capítulo se incluye un novedoso análisis matemático del funcionamiento del diodo en esa región para múltiples tonos de entrada, variando la amplitud y frecuencia de estos. En el capítulo 3 se muestra la comparativa entre el modelo teórico, las simulaciones y las medidas en el laboratorio, usando múltiples tonos entrada en tres rectificadores. Para comparar adecuadamente todos los resultados, es necesario utilizar un modelo Spice del diodo preciso (incluyendo los parásitos del encapsulado) y un correcto setup de medida. De lo contrario, existiría un error en los resultados debido a una caracterización inadecuada del dispositivo no lineal. Este capítulo aborda esos problemas. El análisis muestra que la frecuencia y amplitud relativa de múltiples señales simultáneas afectan a la eficiencia. Una vez estudiado el rectificador, el capítulo 4 de la tesis aborda el diseño de la antena. Para ello, se analizan los diferentes criterios de diseño que deben emplearse cuando se trabaja con una transmisión de potencia inalámbrica directiva o no directiva, como es en caso bajo estudio, así como las técnicas de integración entre rectificador y antena. Para concluir, se diseña y mide una rectena tanto en laboratorio como en espacio abierto, usando la energía ambiental, previamente caracterizada con medidas espectrales. Los resultados demuestran que es posible recolectar y rectificar la energía ambiental. En el capítulo 5 se muestra una posible aplicación al integrarse una rectena impresa en una camiseta para alimentar sensores biológicos o \wearable". Se trata de un diseño de banda ancha que opera en el rango de 2 a 5 GHz, que permite recolectar suficiente energía para alimentar sensores de bajo consumo. Se analiza el funcionamiento de dos tamaños distintos de arrays con diferentes densidades de potencia. Al ser un diseño \wearable", la aplicación ha sido diseñada y probada sobre un maniquí y un cuerpo humano, analizándose el comportamiento de la antena impresa sobre distintas composiciones corporales (personas con más tejido adiposo o por el contrario más fibrosas). Finalmente, el capítulo 6 recopila las conclusiones del trabajo que se muestra en esta tesis e ideas para trabajos futuros, proponiéndose desde enfoques para reducir más el error en la aproximación del comportamiento no lineal del diodo en el capítulo 2, a posibles mejoras en la antena impresa del capítulo 5, incluyendo la doble polarización lineal.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Carlos Martín Pascual.- Secretario: Simon Jacques Hemour.- Vocal: Nuno Miguel G. Borges De Carvalh

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    corecore