2,413 research outputs found
Corrosion of Carbon Steel in Artificial Geothermal Brine: Influence of Carbon Dioxide at 70 °C and 150 °C
This study focuses on the corrosion mechanism of carbon steel exposed to an artificial geothermal brine influenced by carbon dioxide (CO2) gas. The tested brine simulates a geothermal source in Sibayak, Indonesia, containing 1500 mg/L of Cl−, 20 mg/L of SO42−, and 15 mg/L of HCO3− with pH 4. To reveal the temperature effect on the corrosion behavior of carbon steel, exposure and electrochemical tests were carried out at 70 °C and 150 °C. Surface analysis of corroded specimens showed localized corrosion at both temperatures, despite the formation of corrosion products on the surface. After 7 days at 150 °C, SEM images showed the formation of an adherent, dense, and crystalline FeCO3 layer. Whereas at 70 °C, the corrosion products consisted of chukanovite (Fe2(OH)2CO3) and siderite (FeCO3), which are less dense and less protective than that at 150 °C. Control experiments under Ar-environment were used to investigate the corrosive effect of CO2. Free corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) confirm that at both temperatures, the corrosive effect of CO2 was more significant compared to that measured in the Ar-containing solution. In terms of temperature effect, carbon steel remained active at 70 °C, while at 150 °C, it became passive due to the FeCO3 formation. These results suggest that carbon steel is more susceptible to corrosion at the near ground surface of a geothermal well, whereas at a deeper well with a higher temperature, there is a possible risk of scaling (FeCO3 layer). A longer exposure test at 150 °C with a stagnant solution for 28 days, however, showed the unstable FeCO3 layer and therefore a deeper localized corrosion compared to that of seven-day exposed specimens
Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes
Magnetotransport measurements in large diameter multiwall carbon nanotubes
(20-40 nm) demonstrate the competition of a magnetic-field dependent
bandstructure and Altshuler-Aronov-Spivak oscillations. By means of an
efficient capacitive coupling to a backgate electrode, the magnetoconductance
oscillations are explored as a function of Fermi level shift. Changing the
magnetic field orientation with respect to the tube axis and by ensemble
averaging, allows to identify the contributions of different Aharonov-Bohm
phases. The results are in qualitative agreement with numerical calculations of
the band structure and the conductance.Comment: 4 figures, 5 page
Living IoT: A Flying Wireless Platform on Live Insects
Sensor networks with devices capable of moving could enable applications
ranging from precision irrigation to environmental sensing. Using mechanical
drones to move sensors, however, severely limits operation time since flight
time is limited by the energy density of current battery technology. We explore
an alternative, biology-based solution: integrate sensing, computing and
communication functionalities onto live flying insects to create a mobile IoT
platform.
Such an approach takes advantage of these tiny, highly efficient biological
insects which are ubiquitous in many outdoor ecosystems, to essentially provide
mobility for free. Doing so however requires addressing key technical
challenges of power, size, weight and self-localization in order for the
insects to perform location-dependent sensing operations as they carry our IoT
payload through the environment. We develop and deploy our platform on
bumblebees which includes backscatter communication, low-power
self-localization hardware, sensors, and a power source. We show that our
platform is capable of sensing, backscattering data at 1 kbps when the insects
are back at the hive, and localizing itself up to distances of 80 m from the
access points, all within a total weight budget of 102 mg.Comment: Co-primary authors: Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang,
In Proceedings of Mobicom. ACM, New York, NY, USA, 15 pages, 201
- …
