5,130 research outputs found

    Characterizing the Shape of Activation Space in Deep Neural Networks

    Full text link
    The representations learned by deep neural networks are difficult to interpret in part due to their large parameter space and the complexities introduced by their multi-layer structure. We introduce a method for computing persistent homology over the graphical activation structure of neural networks, which provides access to the task-relevant substructures activated throughout the network for a given input. This topological perspective provides unique insights into the distributed representations encoded by neural networks in terms of the shape of their activation structures. We demonstrate the value of this approach by showing an alternative explanation for the existence of adversarial examples. By studying the topology of network activations across multiple architectures and datasets, we find that adversarial perturbations do not add activations that target the semantic structure of the adversarial class as previously hypothesized. Rather, adversarial examples are explainable as alterations to the dominant activation structures induced by the original image, suggesting the class representations learned by deep networks are problematically sparse on the input space

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Transfer learning of deep neural network representations for fMRI decoding

    Get PDF
    Background: Deep neural networks have revolutionised machine learning, with unparalleled performance in object classification. However, in brain imaging (e.g., fMRI), the direct application of Convolutional Neural Networks (CNN) to decoding subject states or perception from imaging data seems impractical given the scarcity of available data. New method: In this work we propose a robust method to transfer information from deep learning (DL) features to brain fMRI data with the goal of decoding. By adopting Reduced Rank Regression with Ridge Regularisation we establish a multivariate link between imaging data and the fully connected layer (fc7) of a CNN. We exploit the reconstructed fc7 features by performing an object image classification task on two datasets: one of the largest fMRI databases, taken from different scanners from more than two hundred subjects watching different movie clips, and another with fMRI data taken while watching static images. Results: The fc7 features could be significantly reconstructed from the imaging data, and led to significant decoding performance. Comparison with existing methods: The decoding based on reconstructed fc7 outperformed the decoding based on imaging data alone. Conclusion: In this work we show how to improve fMRI-based decoding benefiting from the mapping between functional data and CNN features. The potential advantage of the proposed method is twofold: the extraction of stimuli representations by means of an automatic procedure (unsupervised) and the embedding of high-dimensional neuroimaging data onto a space designed for visual object discrimination, leading to a more manageable space from dimensionality point of view

    Towards On-line Domain-Independent Big Data Learning: Novel Theories and Applications

    Get PDF
    Feature extraction is an extremely important pre-processing step to pattern recognition, and machine learning problems. This thesis highlights how one can best extract features from the data in an exhaustively online and purely adaptive manner. The solution to this problem is given for both labeled and unlabeled datasets, by presenting a number of novel on-line learning approaches. Specifically, the differential equation method for solving the generalized eigenvalue problem is used to derive a number of novel machine learning and feature extraction algorithms. The incremental eigen-solution method is used to derive a novel incremental extension of linear discriminant analysis (LDA). Further the proposed incremental version is combined with extreme learning machine (ELM) in which the ELM is used as a preprocessor before learning. In this first key contribution, the dynamic random expansion characteristic of ELM is combined with the proposed incremental LDA technique, and shown to offer a significant improvement in maximizing the discrimination between points in two different classes, while minimizing the distance within each class, in comparison with other standard state-of-the-art incremental and batch techniques. In the second contribution, the differential equation method for solving the generalized eigenvalue problem is used to derive a novel state-of-the-art purely incremental version of slow feature analysis (SLA) algorithm, termed the generalized eigenvalue based slow feature analysis (GENEIGSFA) technique. Further the time series expansion of echo state network (ESN) and radial basis functions (EBF) are used as a pre-processor before learning. In addition, the higher order derivatives are used as a smoothing constraint in the output signal. Finally, an online extension of the generalized eigenvalue problem, derived from James Stone’s criterion, is tested, evaluated and compared with the standard batch version of the slow feature analysis technique, to demonstrate its comparative effectiveness. In the third contribution, light-weight extensions of the statistical technique known as canonical correlation analysis (CCA) for both twinned and multiple data streams, are derived by using the same existing method of solving the generalized eigenvalue problem. Further the proposed method is enhanced by maximizing the covariance between data streams while simultaneously maximizing the rate of change of variances within each data stream. A recurrent set of connections used by ESN are used as a pre-processor between the inputs and the canonical projections in order to capture shared temporal information in two or more data streams. A solution to the problem of identifying a low dimensional manifold on a high dimensional dataspace is then presented in an incremental and adaptive manner. Finally, an online locally optimized extension of Laplacian Eigenmaps is derived termed the generalized incremental laplacian eigenmaps technique (GENILE). Apart from exploiting the benefit of the incremental nature of the proposed manifold based dimensionality reduction technique, most of the time the projections produced by this method are shown to produce a better classification accuracy in comparison with standard batch versions of these techniques - on both artificial and real datasets

    An Overview of Computational Approaches for Interpretation Analysis

    Get PDF
    It is said that beauty is in the eye of the beholder. But how exactly can we characterize such discrepancies in interpretation? For example, are there any specific features of an image that makes person A regard an image as beautiful while person B finds the same image displeasing? Such questions ultimately aim at explaining our individual ways of interpretation, an intention that has been of fundamental importance to the social sciences from the beginning. More recently, advances in computer science brought up two related questions: First, can computational tools be adopted for analyzing ways of interpretation? Second, what if the "beholder" is a computer model, i.e., how can we explain a computer model's point of view? Numerous efforts have been made regarding both of these points, while many existing approaches focus on particular aspects and are still rather separate. With this paper, in order to connect these approaches we introduce a theoretical framework for analyzing interpretation, which is applicable to interpretation of both human beings and computer models. We give an overview of relevant computational approaches from various fields, and discuss the most common and promising application areas. The focus of this paper lies on interpretation of text and image data, while many of the presented approaches are applicable to other types of data as well.Comment: Preprint submitted to Digital Signal Processin
    corecore