1,257 research outputs found

    Statistical Methods in Integrative Genomics

    Get PDF
    Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions

    Integrative methods for analyzing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Integrative methods for analysing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Probabilistic analysis of the human transcriptome with side information

    Get PDF
    Understanding functional organization of genetic information is a major challenge in modern biology. Following the initial publication of the human genome sequence in 2001, advances in high-throughput measurement technologies and efficient sharing of research material through community databases have opened up new views to the study of living organisms and the structure of life. In this thesis, novel computational strategies have been developed to investigate a key functional layer of genetic information, the human transcriptome, which regulates the function of living cells through protein synthesis. The key contributions of the thesis are general exploratory tools for high-throughput data analysis that have provided new insights to cell-biological networks, cancer mechanisms and other aspects of genome function. A central challenge in functional genomics is that high-dimensional genomic observations are associated with high levels of complex and largely unknown sources of variation. By combining statistical evidence across multiple measurement sources and the wealth of background information in genomic data repositories it has been possible to solve some the uncertainties associated with individual observations and to identify functional mechanisms that could not be detected based on individual measurement sources. Statistical learning and probabilistic models provide a natural framework for such modeling tasks. Open source implementations of the key methodological contributions have been released to facilitate further adoption of the developed methods by the research community.Comment: Doctoral thesis. 103 pages, 11 figure

    Pathway-Based Multi-Omics Data Integration for Breast Cancer Diagnosis and Prognosis.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    BAYESIAN INTEGRATIVE ANALYSIS OF OMICS DATA

    Get PDF
    Technological innovations have produced large multi-modal datasets that range in multiplatform genomic data, pathway data, proteomic data, imaging data and clinical data. Integrative analysis of such data sets have potentiality in revealing important biological and clinical insights into complex diseases like cancer. This dissertation focuses on Bayesian methodology establishment in integrative analysis of radiogenomics and pathway driver detection applied in cancer applications. We initially present Radio-iBAG that utilizes Bayesian approaches in analyzing radiological imaging and multi-platform genomic data, which we establish a multi-scale Bayesian hierarchical model that simultaneously identifies genomic and radiomic, i.e., radiology-based imaging markers, along with the latent associations between these two modalities, and to detect the overall prognostic relevance of the combined markers. Our method is motivated by and applied to The Cancer Genome Atlas glioblastoma multiforme data set, wherein it identifies important magnetic resonance imaging features and the associated genomic platforms that are also significantly related with patient survival times. For another aspect of integrative analysis, we then present pathDrive that aims to detect key genetic and epigenetic upstream drivers that influence pathway activity. The method is applied into colorectal cancer incorporated with its four molecular subtypes. For each of the pathways that significantly differentiates subgroups, we detect important genomic drivers that can be viewed as “switches” for the pathway activity. To extend the analysis, finally, we develop proteomic based pathway driver analysis for multiple cancer types wherein we simultaneously detect genomic upstream factors that influence a specific pathway for each cancer type within the cancer group. With Bayesian hierarchical model, we detect signals borrowing strength from common cancer type to rare cancer type, and simultaneously estimate their selection similarity. Through simulation study, our method is demonstrated in providing many advantages, including increased power and lower false discovery rates. We then apply the method into the analysis of multiple cancer groups, wherein we detect key genomic upstream drivers with proper biological interpretation. The overall framework and methodologies established in this dissertation illustrate further investigation in the field of integrative analysis of omics data, provide more comprehensive insight into biological mechanisms and processes, cancer development and progression

    Network-guided data integration and gene prioritization

    Get PDF

    Undisclosed, unmet and neglected challenges in multi-omics studies

    Full text link
    [EN] Multi-omics approaches have become a reality in both large genomics projects and small laboratories. However, the multi-omics research community still faces a number of issues that have either not been sufficiently discussed or for which current solutions are still limited. In this Perspective, we elaborate on these limitations and suggest points of attention for future research. We finally discuss new opportunities and challenges brought to the field by the rapid development of single-cell high-throughput molecular technologies.This work has been funded by the Spanish Ministry of Science and Innovation with grant number BES-2016-076994 to A.A.-L.Tarazona, S.; Arzalluz-Luque, Á.; Conesa, A. (2021). Undisclosed, unmet and neglected challenges in multi-omics studies. Nature Computational Science. 1(6):395-402. https://doi.org/10.1038/s43588-021-00086-z3954021
    corecore