364 research outputs found

    Division by zero in non-involutive meadows

    Get PDF
    Meadows have been proposed as alternatives for fields with a purely equational axiomatization. At the basis of meadows lies the decision to make the multiplicative inverse operation total by imposing that the multiplicative inverse of zero is zero. Thus, the multiplicative inverse operation of a meadow is an involution. In this paper, we study `non-involutive meadows', i.e.\ variants of meadows in which the multiplicative inverse of zero is not zero, and pay special attention to non-involutive meadows in which the multiplicative inverse of zero is one.Comment: 14 page

    Inversive Meadows and Divisive Meadows

    Get PDF
    Inversive meadows are commutative rings with a multiplicative identity element and a total multiplicative inverse operation whose value at 0 is 0. Divisive meadows are inversive meadows with the multiplicative inverse operation replaced by a division operation. We give finite equational specifications of the class of all inversive meadows and the class of all divisive meadows. It depends on the angle from which they are viewed whether inversive meadows or divisive meadows must be considered more basic. We show that inversive and divisive meadows of rational numbers can be obtained as initial algebras of finite equational specifications. In the spirit of Peacock's arithmetical algebra, we study variants of inversive and divisive meadows without an additive identity element and/or an additive inverse operation. We propose simple constructions of variants of inversive and divisive meadows with a partial multiplicative inverse or division operation from inversive and divisive meadows. Divisive meadows are more basic if these variants are considered as well. We give a simple account of how mathematicians deal with 1 / 0, in which meadows and a customary convention among mathematicians play prominent parts, and we make plausible that a convincing account, starting from the popular computer science viewpoint that 1 / 0 is undefined, by means of some logic of partial functions is not attainable.Comment: 18 pages; error corrected; 29 pages, combined with arXiv:0909.2088 [math.RA] and arXiv:0909.5271 [math.RA

    Straight-line instruction sequence completeness for total calculation on cancellation meadows

    Get PDF
    A combination of program algebra with the theory of meadows is designed leading to a theory of computation in algebraic structures which use in addition to a zero test and copying instructions the instruction set {x⇐0,x⇐1,xβ‡βˆ’x,x⇐xβˆ’1,x⇐x+y,x⇐xβ‹…y}\{x \Leftarrow 0, x \Leftarrow 1, x\Leftarrow -x, x\Leftarrow x^{-1}, x\Leftarrow x+y, x\Leftarrow x\cdot y\}. It is proven that total functions on cancellation meadows can be computed by straight-line programs using at most 5 auxiliary variables. A similar result is obtained for signed meadows.Comment: 24 page

    Equations for formally real meadows

    Get PDF
    We consider the signatures Ξ£m=(0,1,βˆ’,+,β‹…,Β βˆ’1)\Sigma_m=(0,1,-,+, \cdot, \ ^{-1}) of meadows and (Ξ£m,s)(\Sigma_m, {\mathbf s}) of signed meadows. We give two complete axiomatizations of the equational theories of the real numbers with respect to these signatures. In the first case, we extend the axiomatization of zero-totalized fields by a single axiom scheme expressing formal realness; the second axiomatization presupposes an ordering. We apply these completeness results in order to obtain complete axiomatizations of the complex numbers.Comment: 24 pages, 14 tables, revised, new Theorem 3.
    • …
    corecore