2 research outputs found

    EdgeSense: Edge-Mediated Spatial-Temporal Crowdsensing

    Get PDF
    Edge computing recently is increasingly popular due to the growth of data size and the need of sensing with the reduced center. Based on Edge computing architecture, we propose a novel crowdsensing framework called Edge-Mediated Spatial-Temporal Crowdsensing. This algorithm targets on receiving the environment information such as air pollution, temperature, and traffic flow in some parts of the goal area, and does not aggregate sensor data with its location information. Specifically, EdgeSense works on top of a secured peer-To-peer network consisted of participants and propose a novel Decentralized Spatial-Temporal Crowdsensing framework based on Parallelized Stochastic Gradient Descent. To approximate the sensing data in each part of the target area in each sensing cycle, EdgeSense uses the local sensor data in participants\u27 mobile devices to learn the low-rank characteristic and then recovers the sensing data from it. We evaluate the EdgeSense on the real-world data sets (temperature [1] and PM2.5 [2] data sets), where our algorithm can achieve low error in approximation and also can compete with the baseline algorithm which is designed using centralized and aggregated mechanism

    Systems and Methods for Measuring and Improving End-User Application Performance on Mobile Devices

    Full text link
    In today's rapidly growing smartphone society, the time users are spending on their smartphones is continuing to grow and mobile applications are becoming the primary medium for providing services and content to users. With such fast paced growth in smart-phone usage, cellular carriers and internet service providers continuously upgrade their infrastructure to the latest technologies and expand their capacities to improve the performance and reliability of their network and to satisfy exploding user demand for mobile data. On the other side of the spectrum, content providers and e-commerce companies adopt the latest protocols and techniques to provide smooth and feature-rich user experiences on their applications. To ensure a good quality of experience, monitoring how applications perform on users' devices is necessary. Often, network and content providers lack such visibility into the end-user application performance. In this dissertation, we demonstrate that having visibility into the end-user perceived performance, through system design for efficient and coordinated active and passive measurements of end-user application and network performance, is crucial for detecting, diagnosing, and addressing performance problems on mobile devices. My dissertation consists of three projects to support this statement. First, to provide such continuous monitoring on smartphones with constrained resources that operate in such a highly dynamic mobile environment, we devise efficient, adaptive, and coordinated systems, as a platform, for active and passive measurements of end-user performance. Second, using this platform and other passive data collection techniques, we conduct an in-depth user trial of mobile multipath to understand how Multipath TCP (MPTCP) performs in practice. Our measurement study reveals several limitations of MPTCP. Based on the insights gained from our measurement study, we propose two different schemes to address the identified limitations of MPTCP. Last, we show how to provide visibility into the end- user application performance for internet providers and in particular home WiFi routers by passively monitoring users' traffic and utilizing per-app models mapping various network quality of service (QoS) metrics to the application performance.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146014/1/ashnik_1.pd
    corecore