3 research outputs found

    Can the US Minimum Data Set Be Used for Predicting Admissions to Acute Care Facilities?

    Get PDF
    This paper is intended to give an overview of Knowledge Discovery in Large Datasets (KDD) and data mining applications in healthcare particularly as related to the Minimum Data Set, a resident assessment tool which is used in US long-term care facilities. The US Health Care Finance Administration, which mandates the use of this tool, has accumulated massive warehouses of MDS data. The pressure in healthcare to increase efficiency and effectiveness while improving patient outcomes requires that we find new ways to harness these vast resources. The intent of this preliminary study design paper is to discuss the development of an approach which utilizes the MDS, in conjunction with KDD and classification algorithms, in an attempt to predict admission from a long-term care facility to an acute care facility. The use of acute care services by long term care residents is a negative outcome, potentially avoidable, and expensive. The value of the MDS warehouse can be realized by the use of the stored data in ways that can improve patient outcomes and avoid the use of expensive acute care services. This study, when completed, will test whether the MDS warehouse can be used to describe patient outcomes and possibly be of predictive value

    Can the US Minimum Data Set Be Used for Predicting Admissions to Acute Care Facilities?

    Get PDF
    This paper is intended to give an overview of Knowledge Discovery in Large Datasets (KDD) and data mining applications in healthcare particularly as related to the Minimum Data Set, a resident assessment tool which is used in US long-term care facilities. The US Health Care Finance Administration, which mandates the use of this tool, has accumulated massive warehouses of MDS data. The pressure in healthcare to increase efficiency and effectiveness while improving patient outcomes requires that we find new ways to harness these vast resources. The intent of this preliminary study design paper is to discuss the development of an approach which utilizes the MDS, in conjunction with KDD and classification algorithms, in an attempt to predict admission from a long-term care facility to an acute care facility. The use of acute care services by long term care residents is a negative outcome, potentially avoidable, and expensive. The value of the MDS warehouse can be realized by the use of the stored data in ways that can improve patient outcomes and avoid the use of expensive acute care services. This study, when completed, will test whether the MDS warehouse can be used to describe patient outcomes and possibly be of predictive value

    Clinical foundations and information architecture for the implementation of a federated health record service

    Get PDF
    Clinical care increasingly requires healthcare professionals to access patient record information that may be distributed across multiple sites, held in a variety of paper and electronic formats, and represented as mixtures of narrative, structured, coded and multi-media entries. A longitudinal person-centred electronic health record (EHR) is a much-anticipated solution to this problem, but its realisation is proving to be a long and complex journey. This Thesis explores the history and evolution of clinical information systems, and establishes a set of clinical and ethico-legal requirements for a generic EHR server. A federation approach (FHR) to harmonising distributed heterogeneous electronic clinical databases is advocated as the basis for meeting these requirements. A set of information models and middleware services, needed to implement a Federated Health Record server, are then described, thereby supporting access by clinical applications to a distributed set of feeder systems holding patient record information. The overall information architecture thus defined provides a generic means of combining such feeder system data to create a virtual electronic health record. Active collaboration in a wide range of clinical contexts, across the whole of Europe, has been central to the evolution of the approach taken. A federated health record server based on this architecture has been implemented by the author and colleagues and deployed in a live clinical environment in the Department of Cardiovascular Medicine at the Whittington Hospital in North London. This implementation experience has fed back into the conceptual development of the approach and has provided "proof-of-concept" verification of its completeness and practical utility. This research has benefited from collaboration with a wide range of healthcare sites, informatics organisations and industry across Europe though several EU Health Telematics projects: GEHR, Synapses, EHCR-SupA, SynEx, Medicate and 6WINIT. The information models published here have been placed in the public domain and have substantially contributed to two generations of CEN health informatics standards, including CEN TC/251 ENV 13606
    corecore