2 research outputs found

    Ontology-Grounded Topic Modeling for Climate Science Research

    Full text link
    In scientific disciplines where research findings have a strong impact on society, reducing the amount of time it takes to understand, synthesize and exploit the research is invaluable. Topic modeling is an effective technique for summarizing a collection of documents to find the main themes among them and to classify other documents that have a similar mixture of co-occurring words. We show how grounding a topic model with an ontology, extracted from a glossary of important domain phrases, improves the topics generated and makes them easier to understand. We apply and evaluate this method to the climate science domain. The result improves the topics generated and supports faster research understanding, discovery of social networks among researchers, and automatic ontology generation.Comment: To appear in Proc. of Semantic Web for Social Good Workshop of the Int. Semantic Web Conf., Oct 2018 and published as part of the book "Emerging Topics in Semantic Technologies. ISWC 2018 Satellite Events", E. Demidova, A.J. Zaveri, E. Simperl (Eds.), ISBN: 978-3-89838-736-1, 2018, AKA Verlag Berlin, (edited authors

    Machine Learning for the Geosciences: Challenges and Opportunities

    Full text link
    Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML) -- that has been widely successful in commercial domains -- offers immense potential to contribute to problems in geosciences. However, problems in geosciences have several unique challenges that are seldom found in traditional applications, requiring novel problem formulations and methodologies in machine learning. This article introduces researchers in the machine learning (ML) community to these challenges offered by geoscience problems and the opportunities that exist for advancing both machine learning and geosciences. We first highlight typical sources of geoscience data and describe their properties that make it challenging to use traditional machine learning techniques. We then describe some of the common categories of geoscience problems where machine learning can play a role, and discuss some of the existing efforts and promising directions for methodological development in machine learning. We conclude by discussing some of the emerging research themes in machine learning that are applicable across all problems in the geosciences, and the importance of a deep collaboration between machine learning and geosciences for synergistic advancements in both disciplines.Comment: Under review at IEEE Transactions on Knowledge and Data Engineerin
    corecore