901 research outputs found

    The Semantic Web … Sounds Logical!

    Get PDF
    The Semantic Web will be an enabling technology for the future because as all of life\u27s components continue to progress and evolve, the demand on us as humans will continue to increase. Work will expect more productivity; family will demand more quality time, and even leisure activities will be technologically advanced. With these variables in mind, I believe humans will demand technologies that help to simplify this treacherous lifestyle. As patterns already indicate, one of the driving forces of technological development is efficiency. Developers are consistently looking for ways to make life\u27s demands less strenuous and more streamlined. The benefits of the semantic web are two-fold. Conceptually, it will enable us to be productive at home while at work, and productive at work while at home. The Semantic Web will be a technology that truly changes our lifestyle. The Web has yet to harness its full potential. We have yet to realize that in addition to computers, other machines can actually participate in the decision-making process via the Internet. This will allow virtually all devices the opportunity to be a helpful resource for humans via the Web. It must be taken into consideration that the Semantic Web will not be separate from the World Wide Web, but an extension of it. It will allow information to be given a well-defined meaning, which will allow computers and people to work in cooperation. With this technology, humans will be able to establish connections to machines that are not currently connected to the World Wide Web. For the Semantic Web to function, computers must have access to structured collections of information and sets of inference rules that they can use to conduct automated reasoning (Scientific American: Feature Article: The Semantic Web, 3). Using rules to make inferences, choosing a course of action, and answering questions will add functional logic to the Web. Currently the Semantic Web community is developing this new Web by using Extensible Markup Language (XML) and Resource Description Framework (RDF) and ultimately, Ontologies

    Semantic technologies: from niche to the mainstream of Web 3? A comprehensive framework for web Information modelling and semantic annotation

    Get PDF
    Context: Web information technologies developed and applied in the last decade have considerably changed the way web applications operate and have revolutionised information management and knowledge discovery. Social technologies, user-generated classification schemes and formal semantics have a far-reaching sphere of influence. They promote collective intelligence, support interoperability, enhance sustainability and instigate innovation. Contribution: The research carried out and consequent publications follow the various paradigms of semantic technologies, assess each approach, evaluate its efficiency, identify the challenges involved and propose a comprehensive framework for web information modelling and semantic annotation, which is the thesis’ original contribution to knowledge. The proposed framework assists web information modelling, facilitates semantic annotation and information retrieval, enables system interoperability and enhances information quality. Implications: Semantic technologies coupled with social media and end-user involvement can instigate innovative influence with wide organisational implications that can benefit a considerable range of industries. The scalable and sustainable business models of social computing and the collective intelligence of organisational social media can be resourcefully paired with internal research and knowledge from interoperable information repositories, back-end databases and legacy systems. Semantified information assets can free human resources so that they can be used to better serve business development, support innovation and increase productivity

    Extracting ontological structures from collaborative tagging systems

    Get PDF

    Role of Semantic web in the changing context of Enterprise Collaboration

    Get PDF
    In order to compete with the global giants, enterprises are concentrating on their core competencies and collaborating with organizations that compliment their skills and core activities. The current trend is to develop temporary alliances of independent enterprises, in which companies can come together to share skills, core competencies and resources. However, knowledge sharing and communication among multidiscipline companies is a complex and challenging problem. In a collaborative environment, the meaning of knowledge is drastically affected by the context in which it is viewed and interpreted; thus necessitating the treatment of structure as well as semantics of the data stored in enterprise repositories. Keeping the present market and technological scenario in mind, this research aims to propose tools and techniques that can enable companies to assimilate distributed information resources and achieve their business goals

    An Overlay Architecture for Personalized Object Access and Sharing in a Peer-to-Peer Environment

    Get PDF
    Due to its exponential growth and decentralized nature, the Internet has evolved into a chaotic repository, making it difficult for users to discover and access resources of interest to them. As a result, users have to deal with the problem of information overload. The Semantic Web's emergence provides Internet users with the ability to associate explicit, self-described semantics with resources. This ability will facilitate in turn the development of ontology-based resource discovery tools to help users retrieve information in an efficient manner. However, it is widely believed that the Semantic Web of the future will be a complex web of smaller ontologies, mostly created by various groups of web users who share a similar interest, referred to as a Community of Interest. This thesis proposes a solution to the information overload problem using a user driven framework, referred to as a Personalized Web, that allows individual users to organize themselves into Communities of Interests based on ontologies agreed upon by all community members. Within this framework, users can define and augment their personalized views of the Internet by associating specific properties and attributes to resources and defining constraint-functions and rules that govern the interpretation of the semantics associated with the resources. Such views can then be used to capture the user's interests and integrate these views into a user-defined Personalized Web. As a proof of concept, a Personalized Web architecture that employs ontology-based semantics and a structured Peer-to-Peer overlay network to provide a foundation of semantically-based resource indexing and advertising is developed. In order to investigate mechanisms that support the resource advertising and retrieval of the Personalized Web architecture, three agent-driven advertising and retrieval schemes, the Aggressive scheme, the Crawler-based scheme, and the Minimum-Cover-Rule scheme, were implemented and evaluated in both stable and churn environments. In addition to the development of a Personalized Web architecture that deals with typical web resources, this thesis used a case study to explore the potential of the Personalized Web architecture to support future web service workflow applications. The results of this investigation demonstrated that the architecture can support the automation of service discovery, negotiation, and invocation, allowing service consumers to actualize a personalized web service workflow. Further investigation will be required to improve the performance of the automation and allow it to be performed in a secure and robust manner. In order to support the next generation Internet, further exploration will be needed for the development of a Personalized Web that includes ubiquitous and pervasive resources

    On construction, performance, and diversification for structured queries on the semantic desktop

    Get PDF
    [no abstract

    Context-based multimedia semantics modelling and representation

    Get PDF
    The evolution of the World Wide Web, increase in processing power, and more network bandwidth have contributed to the proliferation of digital multimedia data. Since multimedia data has become a critical resource in many organisations, there is an increasing need to gain efficient access to data, in order to share, extract knowledge, and ultimately use the knowledge to inform business decisions. Existing methods for multimedia semantic understanding are limited to the computable low-level features; which raises the question of how to identify and represent the high-level semantic knowledge in multimedia resources.In order to bridge the semantic gap between multimedia low-level features and high-level human perception, this thesis seeks to identify the possible contextual dimensions in multimedia resources to help in semantic understanding and organisation. This thesis investigates the use of contextual knowledge to organise and represent the semantics of multimedia data aimed at efficient and effective multimedia content-based semantic retrieval.A mixed methods research approach incorporating both Design Science Research and Formal Methods for investigation and evaluation was adopted. A critical review of current approaches for multimedia semantic retrieval was undertaken and various shortcomings identified. The objectives for a solution were defined which led to the design, development, and formalisation of a context-based model for multimedia semantic understanding and organisation. The model relies on the identification of different contextual dimensions in multimedia resources to aggregate meaning and facilitate semantic representation, knowledge sharing and reuse. A prototype system for multimedia annotation, CONMAN was built to demonstrate aspects of the model and validate the research hypothesis, H₁.Towards providing richer and clearer semantic representation of multimedia content, the original contributions of this thesis to Information Science include: (a) a novel framework and formalised model for organising and representing the semantics of heterogeneous visual data; and (b) a novel S-Space model that is aimed at visual information semantic organisation and discovery, and forms the foundations for automatic video semantic understanding
    corecore