585 research outputs found

    Multi-Lane Perception Using Feature Fusion Based on GraphSLAM

    Full text link
    An extensive, precise and robust recognition and modeling of the environment is a key factor for next generations of Advanced Driver Assistance Systems and development of autonomous vehicles. In this paper, a real-time approach for the perception of multiple lanes on highways is proposed. Lane markings detected by camera systems and observations of other traffic participants provide the input data for the algorithm. The information is accumulated and fused using GraphSLAM and the result constitutes the basis for a multilane clothoid model. To allow incorporation of additional information sources, input data is processed in a generic format. Evaluation of the method is performed by comparing real data, collected with an experimental vehicle on highways, to a ground truth map. The results show that ego and adjacent lanes are robustly detected with high quality up to a distance of 120 m. In comparison to serial lane detection, an increase in the detection range of the ego lane and a continuous perception of neighboring lanes is achieved. The method can potentially be utilized for the longitudinal and lateral control of self-driving vehicles

    Road Infrastructure Challenges Faced by Automated Driving: A Review

    Get PDF
    Automated driving can no longer be referred to as hype or science fiction but rather a technology that has been gradually introduced to the market. The recent activities of regulatory bodies and the market penetration of automated driving systems (ADS) demonstrate that society is exhibiting increasing interest in this field and gradually accepting new methods of transport. Automated driving, however, does not depend solely on the advances of onboard sensor technology or artificial intelligence (AI). One of the essential factors in achieving trust and safety in automated driving is road infrastructure, which requires careful consideration. Historically, the development of road infrastructure has been guided by human perception, but today we are at a turning point at which this perspective is not sufficient. In this study, we review the limitations and advances made in the state of the art of automated driving technology with respect to road infrastructure in order to identify gaps that are essential for bridging the transition from human control to self-driving. The main findings of this study are grouped into the following five clusters, characterised according to challenges that must be faced in order to cope with future mobility: international harmonisation of traffic signs and road markings, revision of the maintenance of the road infrastructure, review of common design patterns, digitalisation of road networks, and interdisciplinarity. The main contribution of this study is the provision of a clear and concise overview of the interaction between road infrastructure and ADS as well as the support of international activities to define the requirements of road infrastructure for the successful deployment of ADS
    • …
    corecore