12,119 research outputs found

    Electromagnetic dispersion modeling and measurements for HVDC power cables

    Get PDF
    This paper provides a general framework for electromagnetic modeling, computation and measurements regarding the wave propagation characteristics of High-Voltage Direct Current (HVDC) power cables. The modeling is focused on very long (10 km or more) HVDC power cables and the relevant frequency range is therefore in the low-frequency regime of about 0-100 kHz. An exact dispersion relation is formulated together with a discussion on practical aspects regarding the computation of the propagation constant and the related characteristic impedance. Experimental time-domain measurement data from an 80 km long HVDC power cable is used to validate the model. It is concluded that a single-mode transmission line model is not adequate to account for the mismatch between the power cable and the instrumentation. A mismatch calibration procedure is therefore devised to account for the connection between the measurement equipment and the cable. A dispersion model is thus obtained that is accurate for early times of pulse arrival. To highlight the potential of accurate electromagnetic modeling, an example of high-resolution length-estimation is discussed and analyzed using statistical methods based on the Cramer-Rao lower bound. The analysis reveals that the estimation accuracy based on the present model (and its related model error) is in the order of 100 m for an 80 km long power cable, and that the potential accuracy using a perfect model based on the given measurement data is in the order of centimeters

    Partial discharge pulse propagation in power cable and partial discharge monitoring system

    Get PDF
    Partial discharge (PD) based condition monitoring has been widely applied to power cables. However, difficulties in interpretation of measurement results (location and criticality) remain to be tackled. This paper aims to develop further knowledge in PD signal propagation in power cables and attenuation by the PD monitoring system devices to address the localization and criticality issues. As on-line or in-service PD monitoring sensors commonly comprise of a high frequency current transformer (HFCT) and a high-pass filter, the characteristics of detected PD pulses depend on the attenuation of the cable, the HFCT used and the filter applied. Simulation of pulse propagation in a cable and PD monitoring system are performed, based on analyses in the frequency domain using the concept of transfer functions. Results have been verified by laboratory experiments and using on-site PD measurements. The knowledge gained from the research on the change in pulse characteristics propagating in a cable and through a PD detection system can be very useful to PD denoising and for development of a PD localization technique

    Measurement of Absorption Cross Section of a Lossy Object in Reverberation Chamber Without the Need for Calibration

    Get PDF
    A reliable and simple procedure is proposed to measure the averaged absorption cross section (ACS) of a lossy object in a reverberation chamber (RC). This procedure is based on the time-domain measurement of the ACS in an RC. In the time-domain, to obtain the ACS, the chamber decay time needs to be known. Conventionally, the ACS is normally measured in the frequency domain, and a full two-port calibration must be carried out before collecting the S-parameters, which is tedious and time-consuming. In reality, the chamber decay time depends on the diffused loss of the RC, not the insertion loss of the cables. In this paper, by making use of this fact, the ACS can be measured accurately without calibration, which will simplify the measurement process and shorten the measurement time at the same time

    The LWA1 Radio Telescope

    Full text link
    LWA1 is a new radio telescope operating in the frequency range 10-88 MHz, located in central New Mexico. The telescope consists of 258 pairs of dipole-type antennas whose outputs are individually digitized and formed into beams. Simultaneously, signals from all dipoles can be recorded using one of the instrument's "all dipoles" modes, facilitating all-sky imaging. Notable features of the instrument include high intrinsic sensitivity (about 6 kJy zenith system equivalent flux density), large instantaneous bandwidth (up to 78 MHz), and 4 independently-steerable beams utilizing digital "true time delay" beamforming. This paper summarizes the design of LWA1 and its performance as determined in commissioning experiments. We describe the method currently in use for array calibration, and report on measurements of sensitivity and beamwidth.Comment: 9 pages, 14 figures, accepted by IEEE Trans. Antennas & Propagation. Various minor changes from previous versio

    On-line PD detection and localization in cross-bonded HV cable systems

    Get PDF
    This paper addresses the detection and localization of partial discharge (PD) in crossbonded (CB) high voltage (HV) cables. A great deal has been published in recent years on PD based cable insulation condition monitoring, diagnostics and localization in medium voltage (MV) and high voltage (HV) cables. The topic of pulse propagation and PD source localization in CB HV cable systems has yet to be significantly investigated. The main challenge to PD monitoring of CB HV cables is as a result of the interconnectedness of the sheaths of the three single phase cables. The cross-bonding of the sheaths makes it difficult to localize which of the three phases a PD signal has emanated from. Co-axial cables are used to connect cable sheaths to cable link boxes, for ease of installation and protection against moisture. A second challenge is, therefore, the coupling effect when a PD pulse propagates in HV cable joints and the co-axial cables, making PD detection and localization more complex. The paper presents experimental investigations into PD pulse coupling between the cable center conductor and the sheath and the behavior of PD pulse propagation in CB HV cables. It proposes a model to describe PD pulse propagation in a CB HV cable system to allow monitoring and localization, and also presents the knowledge rules required for PD localization in CB HV cable systems

    Space charge measurement in polymer insulated power cables using flat ground electrode PEA

    No full text
    Data processing methods used to accurately determine the space charge and electric stress distributions in DC power cables using the pulsed electroacoustic (PEA) system are described. Due to the coaxial geometry and the thick-walled insulation of highvoltage cables, factors such as divergence, attenuation and dispersion of the propagated acoustic pressure wave in the PEA can strongly influence the resultant measurements. These factors are taken into account ensuring accurate measurements to be made. Most importantly, a method is presented to determine the electric stress profile across the insulation due to both the divergent applied field and that as a consequence of trapped charge in the bulk of the insulating material. Results of spacecharge measurements and the corresponding derived electric stress distributions in XLPE DC cables are presented

    Dispersion modeling and analysis for multilayered open coaxial waveguides

    Full text link
    This paper presents a detailed modeling and analysis regarding the dispersion characteristics of multilayered open coaxial waveguides. The study is motivated by the need of improved modeling and an increased physical understanding about the wave propagation phenomena on very long power cables which has a potential industrial application with fault localization and monitoring. The electromagnetic model is based on a layer recursive computation of axial-symmetric fields in connection with a magnetic frill generator excitation that can be calibrated to the current measured at the input of the cable. The layer recursive formulation enables a stable and efficient numerical computation of the related dispersion functions as well as a detailed analysis regarding the analytic and asymptotic properties of the associated determinants. Modal contributions as well as the contribution from the associated branch-cut (non-discrete radiating modes) are defined and analyzed. Measurements and modeling of pulse propagation on an 82 km long HVDC power cable are presented as a concrete example. In this example, it is concluded that the contribution from the second TM mode as well as from the branch-cut is negligible for all practical purposes. However, it is also shown that for extremely long power cables the contribution from the branch-cut can in fact dominate over the quasi-TEM mode for some frequency intervals. The main contribution of this paper is to provide the necessary analysis tools for a quantitative study of these phenomena

    Modeling dispersion of partial discharges due to propagation velocity variation in power cables

    Get PDF
    Existing models for partial discharge (PD) propagation based on a single attenuation constant are unable to explain how each frequency component travels with a different propagation velocity. This paper proposes a new model based on a complex propagation term whose real component does not depend on the frequency (ff), and whose imaginary part is modeled with a second order polynomial in ff. The proposed model explains how the PD is attenuated, delayed, and dispersed due to the fact that each frequency component is differently delayed. A closed-form expression is proposed for the PD peak value and width, and a method to derive the model parameters from a reference model existing in the bibliography. Simulation results show that the peak value and width of the propagated PD pulse are similar to those obtained with the proposed model. Additionally, the proposed model provides the velocity of each PD frequency component, which is crucial to get an accurate estimation of the PD source location. The parameters of the proposed model have been estimated using a vector network analyzer for a XLPE cable. These results have been compared to the measurement obtained in a medium voltage test bench where intentionally induced PDs have been captured and processed, confirming the results of attenuation, delay and dispersion predicted by the proposed model

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho
    corecore