6,497 research outputs found

    Improving longitudinal spinal cord atrophy measurements for clinical trials in multiple sclerosis by using the generalised boundary shift integral (GBSI)

    Get PDF
    Spinal cord atrophy is a common and clinically relevant feature of multiple sclerosis (MS), and can be used to monitor disease progression and as an outcome measure in clinical trials. Spinal cord atrophy is conventionally estimated with segmentation-based methods (e.g., cross-sectional spinal cord area (CSA)), where spinal cord change is calculated indirectly by numerical difference between timepoints. In this thesis, I validated the generalised boundary shift integral (GBSI), as the first registration-based method for longitudinal spinal cord atrophy measurement. The GBSI registers the baseline and follow-up spinal cord scans in a common half-way space, to directly determine atrophy on the cord edges. First, on a test dataset (9 MS patients and 9 controls), I have found that GBSI presented with lower random measurement error, than CSA, reflected by lower standard deviation, coefficient of variation and median absolute deviation. Then, on multi-centre, multi-manufacturer, and multi–field‐strength scans (282 MS patients and 82 controls), I confirmed that GBSI provided lower measurement variability in all MS subtypes and controls, than CSA, resulting into better separation between MS patients and controls, improved statistical power, and reduced sample size estimates. Finally, on a phase 2 clinical trial (220 primary-progressive MS patients), I demonstrated that spinal cord atrophy measurements on GBSI could be obtained from brain scans, considering their quality and association with corresponding spinal cord MRI-derived measurements. Not least, 1-year spinal cord atrophy measurements on GBSI, but not CSA, were associated with upper and lower limb motor function. In conclusion, spinal cord atrophy on the GBSI had higher measurement precision and stronger clinical correlates, than the segmentation method, and could be derived from high-quality brain acquisitions. Longitudinal spinal cord atrophy on GBSI could become a gold standard for clinical trials including spinal cord atrophy as an outcome measure, but should remain a secondary outcome measure, until further advancements increase the ease of acquisition and processing

    Different patterns of white matter degeneration using multiple diffusion indices and volumetric data in mild cognitive impairment and Alzheimer patients

    Get PDF
    Alzheimeŕs disease (AD) represents the most prevalent neurodegenerative disorder that causes cognitive decline in old age. In its early stages, AD is associated with microstructural abnormalities in white matter (WM). In the current study, multiple indices of diffusion tensor imaging (DTI) and brain volumetric measurements were employed to comprehensively investigate the landscape of AD pathology. The sample comprised 58 individuals including cognitively normal subjects (controls), amnestic mild cognitive impairment (MCI) and AD patients. Relative to controls, both MCI and AD subjects showed widespread changes of anisotropic fraction (FA) in the corpus callosum, cingulate and uncinate fasciculus. Mean diffusivity and radial changes were also observed in AD patients in comparison with controls. After controlling for the gray matter atrophy the number of regions of significantly lower FA in AD patients relative to controls was decreased; nonetheless, unique areas of microstructural damage remained, e.g., the corpus callosum and uncinate fasciculus. Despite sample size limitations, the current results suggest that a combination of secondary and primary degeneration occurrs in MCI and AD, although the secondary degeneration appears to have a more critical role during the stages of disease involving dementia

    The role of neuroimaging in the diagnosis of the atypical parkinsonian syndromes in clinical practice

    Get PDF
    Atypical parkinsonian disorders (APD) are a heterogenous group of neurodegenerative diseases such as: progressive supranuclear palsy (PSP), multiple system atrophy (MSA), cortico-basal degeneration (CBD) and dementia with Lewy bodies (DLB). In all of them core symptoms of parkinsonian syndrome are accompanied by many additional clinical features not typical for idiopathic Parkinson's disease (PD) like rapid progression, gaze palsy, apraxia, ataxia, early cognitive decline, dysautonomia and usually poor response to levodopa therapy. In the absence of reliably validated biomarkers the diagnosis is still challenging and mainly based on clinical criteria. However, robust data emerging from routine magnetic resonance imaging (MRI) as well as from many advanced MRI techniques such as: diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), voxel-based morphometry (VBM), susceptibility-weighted imaging (SWI) may help in differential diagnosis. The main aim of this review is to summarize briefly the most important and acknowledged radiological findings of conventional MRI due to its availability in standard clinical settings. Nevertheless, we present shortly other methods of structural (like TCS – transcranial sonography) and functional imaging (like SPECT – single photon emission computed tomography or PET – positron emission tomography) as well as some selected advanced MRI techniques and their potential future applications in supportive role in distinguishing APD

    Evaluation of Cerebral Lateral Ventricular Enlargement Derived from Magnetic Resonance Imaging: A Candidate Biomarker of Alzheimer Disease Progression in Vivo

    Get PDF
    Alzheimer disease (AD) is the most common form of dementia and has grievous mortality rates. Measuring brain volumes from structural magnetic resonance images (MRI) may be useful for illuminating disease progression. The goal of this thesis was to (1) help refine a novel technique used to segment the lateral cerebral ventricles from MRI, (2) validate this tool, and determine group-wise differences between normal elderly controls (NEC) and subjects with mild cognitive impairment (MCI) and AD and (3) determine the number of subjects necessary to detect a 20 percent change from the natural history of ventricular enlargement with respect to genotype. Three dimensional Ti-weighted MRI and cognitive measures were acquired from 504 subjects (NEC n = 152, MCI n = 247 and AD n = 105) participating in the multi-centre Alzheimer\u27s Disease Neuroimaging Initiative. Cerebral ventricular volume was quantified at baseline and after six months. For secondary analyses, all groups were dichotomized for Apolipoprotein E genotype based on the presence of an e4 polymorphism. The AD group had greater ventricular enlargement compared to both subjects with MCI (P = 0.0004) and NEC (P \u3c 0.0001), and subjects with MCI had a greater rate of ventricular enlargement compared to NEC (P =0.0001). MCI subjects that progressed to clinical AD after six months had greater ventricular enlargement than stable MCI subjects (P = 0.0270). Ventricular enlargement was different between apolipoprotein E genotypes within the AD group (P = 0.010). The number of subjects required to demonstrate a 20% change in ventricular enlargement (AD: N=342, MCI: N=1180) was substantially lower than that required to demonstrate a 20% change in cognitive scores (MMSE) (AD: N=7056, MCI: N=7712). Therefore, ventricular enlargement represents a feasible short-term marker of disease progression in subjects with MCI and subjects with AD for multi-centre studie

    In vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography

    Get PDF
    Muscle atrophy is a widespread ill condition occurring in many diseases, which can reduce quality of life and increase morbidity and mortality. We developed a new method using non-invasive ultrasonography to measure soleus and gastrocnemius lateralis muscle atrophy in the hindlimb-unloaded rat, a well-Accepted model of muscle disuse. Soleus and gastrocnemius volumes were calculated using the conventional truncated-cone method and a newly-designed sinusoidal method. For Soleus muscle, the ultrasonographic volume determined in vivo with either method was linearly correlated to the volume determined ex-vivo from excised muscles as muscle weight-To-density ratio. For both soleus and gastrocnemius muscles, a strong linear correlation was obtained between the ultrasonographic volume and the muscle fiber cross-sectional area determined ex-vivo on muscle cryosections. Thus ultrasonography allowed the longitudinal in vivo evaluation of muscle atrophy progression during hindlimb unloading. This study validates ultrasonography as a powerful method for the evaluation of rodent muscle atrophy in vivo, which would prove useful in disease models and therapeutic trials

    Magnetic resonance imaging techniques for diagnostics in Parkinson’s disease and atypical parkinsonism

    Get PDF
    Background: Parkinson’s disease (PD) is a neurodegenerative disease characterized by rigidity, hypokinesia, tremor and postural instability. PD is a clinical diagnosis based on neurological examination, patient history and treatment response. Similar symptoms can be caused by other movement disorders such as progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), making it difficult to clinically separate them in early stages. However, these diseases differ in underlying pathology, treatment and prognosis. PSP and MSA have more rapid deterioration and develop additional symptoms such as impaired eye movements or autonomic dysfunction. Magnetic resonance imaging (MRI) is commonly performed as part of the clinical work-up in patients presenting with parkinsonism. There are no overt changes on structural MRI in PD. In atypical parkinsonian syndromes there are typically no visible changes until later disease stages. Purpose: The aim of this thesis is to evaluate novel MRI techniques for diagnostics and for investigation of disease processes in Parkinson’s disease, PSP and MSA. Paper I: A retrospective cohort from Karolinska University Hospital (102 participants; 62 PD, 15 PSP, 11 MSA, 14 controls) was assessed using susceptibility mapping processed from susceptibility weighted imaging. We show that there is elevated susceptibility in the red nucleus and the globus pallidus in PSP compared to PD, MSA and controls. Higher susceptibility levels were also seen in MSA compared to PD in the putamen, and in PD compared to controls in the substantia nigra. Using the red nucleus susceptibility as a diagnostic biomarker, PSP could be separated from PD with an accuracy of 97% (based on the area under the receiver operating characteristic curve, AUC), from MSA with AUC 75% and from controls with AUC 98%. We concluded that susceptibility changes, particularly in the red nucleus in PSP, could be potential biomarkers for differential diagnostics in parkinsonism. Paper II: A prospective cohort from Lund, the BioFINDER study (199 participants; 134 PD, 11 PSP, 10 MSA, 44 controls), was investigated using the susceptibility mapping pipeline developed for Paper I. The finding from Paper I with elevated susceptibility in the red nucleus was validated for PSP compared to PD, MSA and controls. The elevated putaminal susceptibility was also confirmed in MSA compared to PD. The potential role of red nucleus susceptibility as a biomarker for separating PSP from PD and MSA was also similar to the results in Paper I, with AUC 98% for separating PSP from PD and AUC 96% for separating PSP from MSA. We concluded that we could confirm our previous findings from Paper I, with the red nucleus susceptibility being a potential biomarker for separating PSP from PD and MSA. Paper III: A retrospective cohort from Karolinska University Hospital (196 participants; 140 PD, 29 PSP, 27 MSA) was evaluated to employ automated volumetric brainstem segmentation using FreeSurfer. The volumetric approach was compared to manual planimetric measurements: midbrain-pons ratio, magnetic resonance parkinsonism index 1.0 and 2.0. Intra- and inter-scanner as well as intra- and inter-rater reliability were calculated. We found good repeatability in both automated volumetric and manual planimetric measurements. Normalized midbrain volume performed better than the planimetric measurements for separating PSP from PD. We concluded that, if further developed and incorporated in a radiology workflow, automated brainstem volumetry could increase availability of brainstem metrics and possibly save time for radiologists conducting manual measurements. Paper IV: Two cohorts, a retrospective from Karolinska University Hospital (184 participants; 129 PD, 28 PSP, 27 MSA) and a prospective from Lund (185 participants; 125 PD, 11 PSP, 8 MSA, 41 controls), were studied to investigate a new method of creating T1-/T2-weighted ratio images and its diagnostic capabilities in differentiating parkinsonian disorders. In the explorative retrospective cohort, differences in white matter normalized T1-/T2- weighted ratios were seen in the caudate nucleus, putamen, thalamus, subthalamic nucleus and red nucleus in PSP compared to PD; in the caudate nucleus and putamen in MSA compared to PD and in the subthalamic nucleus and the red nucleus in PSP compared to MSA. These differences were validated externally in the prospective cohort, where the changes could be confirmed in the subthalamic nucleus and the red nucleus in PSP compared to PD and MSA. We concluded that there are different patterns of white matter normalized T1-/T2-weighted ratio between the disorders and that this reflects differences in underlying pathophysiology. The T1-/T2-weighted ratio should be further investigated for better understanding of pathological processes in parkinsonian disorders and could possibly be utilized for diagnostic purposes if further developed

    Cerebral Hemodynamic Disturbances in Motor Neuron Disease

    Get PDF
    An association between motor neuron disease (MND) and dementia was first realized in the late 1800s, yet substantiating research and a description of dementia as part of the clinical syndrome would not appear until the 1990s. In the last two decades, medical imaging has investigated cerebral blood flow changes in the motor and nonmotor cortex to correlate with motor dysfunction and clinical dementia, respectively. The aim of this thesis is to describe early cerebral hemodynamic disturbances with the goal to determine a marker for cognitive decline in MND. Chapter 2 describes the relationship between changes in cerebral hemodynamics and cognition in primary lateral sclerosis (PLS) patients compared to normal controls. Neuropsychological testing revealed subtle frontotemporal changes characterized by executive dysfunction that were associated with global increases in mean transit time (MTT) in grey and white matter, and increased cerebral blood volume (CBV) in the frontotemporal grey matter. Chapter 3 presents a longitudinal clinical study of early cerebral hemodynamic changes in amyotrophic lateral sclerosis (ALS) patients without evidence of cognitive impairment at study onset. This Chapter characterized the relationship between duration of disease and MTT in the cortical grey matter. MTT was found to be the most sensitive indicator of early cerebral hemodynamic change accompanying disease progression in ALS. Furthermore, these findings corroborate the trend of increased MTT in the absence of cognitive impairment found in PLS patients in Chapter 2, and may further indicate that hemodynamic changes may occur before the onset of cognitive impairment. in The aim of Chapter 4 was to elucidate a biological mechanism for increased MTT described in the previous Chapters 2 and 3. A rabbit model of global hypotension was used to demonstrate that MTT is an indicator of cerebral perfusion pressure (CPP). A spectrum of cognitive dysfunction has now been described in MND. The use of sensitive neuropsychological testing has enabled us to identify patients with mild changes in cognitive function from those who are cognitively intact. With the help of this stratification, we were able to show that changes in MTT was associated with disease progression and cognitive impairment. The experimental data presented in this thesis suggest that vascular factors may contribute to cognitive dysfunction in MND
    corecore