227 research outputs found
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
Here, we review the basic concepts and applications of the
phase-field-crystal (PFC) method, which is one of the latest simulation
methodologies in materials science for problems, where atomic- and microscales
are tightly coupled. The PFC method operates on atomic length and diffusive
time scales, and thus constitutes a computationally efficient alternative to
molecular simulation methods. Its intense development in materials science
started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88
(2002), p. 245701]. Since these initial studies, dynamical density functional
theory and thermodynamic concepts have been linked to the PFC approach to serve
as further theoretical fundaments for the latter. In this review, we summarize
these methodological development steps as well as the most important
applications of the PFC method with a special focus on the interaction of
development steps taken in hard and soft matter physics, respectively. Doing
so, we hope to present today's state of the art in PFC modelling as well as the
potential, which might still arise from this method in physics and materials
science in the nearby future.Comment: 95 pages, 48 figure
Extended Smoothed Boundary Method for Solving Partial Differential Equations with General Boundary Conditions on Complex Boundaries
In this article, we describe an approach for solving partial differential
equations with general boundary conditions imposed on arbitrarily shaped
boundaries. A continuous function, the domain parameter, is used to modify the
original differential equations such that the equations are solved in the
region where a domain parameter takes a specified value while boundary
conditions are imposed on the region where the value of the domain parameter
varies smoothly across a short distance. The mathematical derivations are
straightforward and generically applicable to a wide variety of partial
differential equations. To demonstrate the general applicability of the
approach, we provide four examples herein: (1) the diffusion equation with both
Neumann and Dirichlet boundary conditions; (2) the diffusion equation with both
surface diffusion and reaction; (3) the mechanical equilibrium equation; and
(4) the equation for phase transformation with the presence of additional
boundaries. The solutions for several of these cases are validated against
corresponding analytical and semi-analytical solutions. The potential of the
approach is demonstrated with five applications: surface-reaction-diffusion
kinetics with a complex geometry, Kirkendall-effect-induced deformation,
thermal stress in a complex geometry, phase transformations affected by
substrate surfaces, and a self-propelled droplet.Comment: This document is the revised version of arXiv:0912.1288v
- …
