2 research outputs found

    Obtaining and Using Cumulative Bounds of Network Reliability

    Get PDF
    In this chapter, we study the task of obtaining and using the exact cumulative bounds of various network reliability indices. A network is modeled by a non-directed random graph with reliable nodes and unreliable edges that fail independently. The approach based on cumulative updating of the network reliability bounds was introduced by Won and Karray in 2010. Using this method, we can find out whether the network is reliable enough with respect to a given threshold. The cumulative updating continues until either the lower reliability bound becomes greater than the threshold or the threshold becomes greater than the upper reliability bound. In the first case, we decide that a network is reliable enough; in the second case, we decide that a network is unreliable. We show how to speed up cumulative bounds obtaining by using partial sums and how to update bounds when applying different methods of reduction and decomposition. Various reliability indices are considered: k-terminal probabilistic connectivity, diameter constrained reliability, average pairwise connectivity, and the expected size of a subnetwork that contains a special node. Expected values can be used for unambiguous decision-making about network reliability, development of evolutionary algorithms for network topology optimization, and obtaining approximate reliability values

    Calculating two-terminal reliability in a diameter constrained network with cutnodes

    No full text
    corecore