1,575 research outputs found

    Hexagonal structure for intelligent vision

    Full text link
    Using hexagonal grids to represent digital images have been studied for more than 40 years. Increased processing capabilities of graphic devices and recent improvements in CCD technology have made hexagonal sampling attractive for practical applications and brought new interests on this topic. The hexagonal structure is considered to be preferable to the rectangular structure due to its higher sampling efficiency, consistent connectivity and higher angular resolution and is even proved to be superior to square structure in many applications. Since there is no mature hardware for hexagonal-based image capture and display, square to hexagonal image conversion has to be done before hexagonal-based image processing. Although hexagonal image representation and storage has not yet come to a standard, experiments based on existing hexagonal coordinate systems have never ceased. In this paper, we firstly introduced general reasons that hexagonally sampled images are chosen for research. Then, typical hexagonal coordinates and addressing schemes, as well as hexagonal based image processing and applications, are fully reviewed. © 2005 IEEE

    Expressing the entropy of lattice systems as sums of conditional entropies

    Full text link
    Whether a system is to be considered complex or not depends on how one searches for correlations. We propose a general scheme for calculation of entropies in lattice systems that has high flexibility in how correlations are successively taken into account. Compared to the traditional approach for estimating the entropy density, in which successive approximations builds on step-wise extensions of blocks of symbols, we show that one can take larger steps when collecting the statistics necessary to calculate the entropy density of the system. In one dimension this means that, instead of a single sweep over the system in which states are read sequentially, one take several sweeps with larger steps so that eventually the whole lattice is covered. This means that the information in correlations is captured in a different way, and in some situations this will lead to a considerably much faster convergence of the entropy density estimate as a function of the size of the configurations used in the estimate. The formalism is exemplified with both an example of a free energy minimisation scheme for the two-dimensional Ising model, and an example of increasingly complex spatial correlations generated by the time evolution of elementary cellular automaton rule 60
    corecore