614,734 research outputs found

    Calcium in the initiation, progression and as an effector of Alzheimer's disease pathology.

    Get PDF
    The cause(s) of sporadic Alzheimer's disease (sAD) are complex and currently poorly understood. They likely result from a combination of genetic, environmental, proteomic and lipidomic factors that crucially occur only in the aged brain. Age-related changes in calcium levels and dynamics have the potential to increase the production and accumulation of both amyloid-beta peptide (Abeta) and tau pathologies in the AD brain, although these two pathologies themselves can induce calcium dyshomeostasis, particularly at synaptic membranes. This review discuses the evidence for a role for calcium dyshomeostasis in the initiation of pathology, as well as the evidence for these pathologies themselves disrupting normal calcium homeostasis, which lead to synaptic and neuronal dysfunction, synaptotoxicity and neuronal loss, underlying the dementia associated with the disease

    Pseudohypocalcemia caused by perchlorate (Irenat (R))

    Get PDF
    Background: Blood gas analysis (BGA), including measurement of ionized calcium, is performed routinely in patients with end stage renal disease on renal replacement therapy, especially when using citrate for regional anticoagulation. After installation of a new blood gas analyzer (RAPIDpoint (R) 405; BGA), we observed lower ionized calcium concentrations in a few patients without signs of hypocalcemia, whereas calcium concentrations were normal using a standard laboratory method. Pseudohypocalcemia was of limited duration and correlated with the short-term intake of sodium perchlorate monohydrate (Irenat (R)). Methods: We prepared dilution series from whole blood samples and stock solutions of calcium and perchlorate with different concentrations of ionized calcium and perchlorate. Measurement of ionized calcium concentrations was performed using two different blood gas analyzers (RAPIDpoint (R) 405; BGA and Roche AVL 9180; standard laboratory method). Results: After addition of different amounts of perchlorate, significant lower ionized calcium concentrations were measured with BGA compared to the standard laboratory method using either preparations from whole blood samples or stock solutions. The addition of potassium or methylene blue known to complex perchlorate had no effect on the concentrations of ionized calcium measured with BGA. Using different mathematical methods, a calculation of the "real" ionized calcium concentration from the value measured with BGA was not possible. Conclusions: Based on our experiments, we confirm the hypothesis that perchlorate can influence the measurement of ionized calcium by BGA. As the effect depends on the ion selective electrode that is used, it is advisable to test the blood gas analyzer with calcium and perchlorate solutions

    The effect of salts on the ionisation of gelatin

    Get PDF
    The effect of the addition of sodium chloride to gelatin solutions is shown from the Donnan relationship to increase the ionisation of the gelatin, the increase produced in acid solutions reaching a maximum at about 1/1000 molar salt concentration. This effect is attributed to the formation of complex ions. From the similar action of calcium and copper chlorides the effective combining power of gelatin for complex positive ion formation is deduced. The bearing of complex ion formation on the zwitter-ionic structure and solubility phenomena of proteins is pointed out

    Regulation of intracellular cyclic GMP concentration by light and calcium in electropermeabilized rod photoreceptors.

    Get PDF
    Abstract This study examines the regulation of cGMP by illumination and by calcium during signal transduction in vertebrate retinal photoreceptor cells. We employed an electropermeabilized rod outer segment (EP-ROS) preparation which permits perfusion of low molecular weight compounds into the cytosol while retaining many of the features of physiologically competent, intact rod outer segments (ROS). When nucleotide-depleted EP-ROS were incubated with MgGTP, time- and dose-dependent increases in intracellular cGMP levels were observed. The steady state cGMP concentration in EP-ROS (0.007 mol cGMP per mol rhodopsin) approached the cGMP concentration in intact ROS. Flash illumination of EP-ROS in a 250-nM free calcium medium resulted in a transient decrease in cGMP levels; this occurred in the absence of changes in calcium concentration. The kinetics of the cGMP response to flash illumination of EP-ROS were similar to that of intact ROS. To further examine the effects of calcium on cGMP metabolism, dark-adapted EP-ROS were incubated with MgGTP containing various concentrations of calcium. We observed a twofold increase in cGMP steady state levels as the free calcium was lowered from 1 μM to 20 nM; this increase was comparable to the behavior of intact ROS. Measurements of guanylate cyclase activity in EP-ROS showed a 3.5-fold increase in activity over this range of calcium concentrations, indicating a retention of calcium regulation of guanylate cyclase in EP-ROS preparations. Flash illumination of EP-ROS in either a 50- or 250-nM free calcium medium revealed a slowing of the recovery time course at the lower calcium concentration. This observation conflicts with any hypothesis whereby a reduction in free calcium concentration hastens the recovery of cytoplasmic cGMP levels, either by stimulating guanylate cyclase activity or by inhibiting phosphodiesterase activity. We conclude that changes in the intracellular calcium concentration during visual transduction may have more complex effects on the recovery of the photoresponse than can be accounted for solely by guanylate cyclase activation

    Information transfer in signaling pathways : a study using coupled simulated and experimental data

    Get PDF
    Background: The topology of signaling cascades has been studied in quite some detail. However, how information is processed exactly is still relatively unknown. Since quite diverse information has to be transported by one and the same signaling cascade (e.g. in case of different agonists), it is clear that the underlying mechanism is more complex than a simple binary switch which relies on the mere presence or absence of a particular species. Therefore, finding means to analyze the information transferred will help in deciphering how information is processed exactly in the cell. Using the information-theoretic measure transfer entropy, we studied the properties of information transfer in an example case, namely calcium signaling under different cellular conditions. Transfer entropy is an asymmetric and dynamic measure of the dependence of two (nonlinear) stochastic processes. We used calcium signaling since it is a well-studied example of complex cellular signaling. It has been suggested that specific information is encoded in the amplitude, frequency and waveform of the oscillatory Ca2+-signal. Results: We set up a computational framework to study information transfer, e.g. for calcium signaling at different levels of activation and different particle numbers in the system. We stochastically coupled simulated and experimentally measured calcium signals to simulated target proteins and used kernel density methods to estimate the transfer entropy from these bivariate time series. We found that, most of the time, the transfer entropy increases with increasing particle numbers. In systems with only few particles, faithful information transfer is hampered by random fluctuations. The transfer entropy also seems to be slightly correlated to the complexity (spiking, bursting or irregular oscillations) of the signal. Finally, we discuss a number of peculiarities of our approach in detail. Conclusion: This study presents the first application of transfer entropy to biochemical signaling pathways. We could quantify the information transferred from simulated/experimentally measured calcium signals to a target enzyme under different cellular conditions. Our approach, comprising stochastic coupling and using the information-theoretic measure transfer entropy, could also be a valuable tool for the analysis of other signaling pathways

    Deviations of Fischer-Tropsch products from an Anderson-Schulz-Flory distribution

    Get PDF
    Negative deviations from an Anderson-Schulz-Flory distribution have been observed for the product of the Fischer-Tropsch synthesis. The catalyst was a complex-derived iron-calcium catalyst promoted with cesium sulphate, therefore, neither carrier acidity nor shape selectivity can explain the deviations. This is the first time that chemical modifications of the catalyst are observed to result in negative ASF deviations

    Calcium-binding capacity of organic and inorganic ortho- and polyphosphates

    Get PDF
    The aim of this research was to determine the calcium-binding capacity of inorganic and organic ortho- and polyphosphates. This calcium-binding capacity can be used to influence the stability of, for example, casein micelles in dairy systems. Four phosphates were selected: disodium uridine monophosphate (Na2UMP, organic orthophosphate), disodium hydrogen phosphate (Na2HPO4, inorganic orthophosphate), sodium phytate (SP, organic polyphosphate), and sodium hexametaphosphate (SHMP, inorganic polyphosphate). Concentrations of up to 100 mmolL-1 phosphate were added to a 50 mmolL-1 CaCl2 solution. The samples were prepared at pH 8.0 and were analyzed before and after sterilization for calcium-ion activity, conductivity, pH, sediment, and turbidity. Both SHMP and SP are strong chelators, as calcium ions bind to these phosphates in the ratio of 3:1 and 6:1, respectively. Calcium ions also strongly bind to Na2HPO4, but in a ratio of 3:2 with insoluble Ca3(PO4)2 complexes as result. The equilibrium position of Na2UMP is not strong towards the chelated complex, and significant levels of free calcium and free phosphate can exist. An equilibrium constant of Lmol-1 was determined for calcium uridine monophosphate (CaUMP) complexes. Both calculation of the equilibrium constant and analysis on the CaUMP precipitate confirmed a reactivity of 1:1 between calcium and Na2UMP. The CaUMP complexes are well soluble at ambient temperature, and insoluble complexes appear after sterilization, because the solubility of CaUMP decreases during heating. Finally, we concluded that the structure of phosphate molecules determines their calcium-binding capacity rather than organic or inorganic origin of phosphate
    corecore