2,644 research outputs found

    Parallel Algorithm for Solving Kepler's Equation on Graphics Processing Units: Application to Analysis of Doppler Exoplanet Searches

    Full text link
    [Abridged] We present the results of a highly parallel Kepler equation solver using the Graphics Processing Unit (GPU) on a commercial nVidia GeForce 280GTX and the "Compute Unified Device Architecture" programming environment. We apply this to evaluate a goodness-of-fit statistic (e.g., chi^2) for Doppler observations of stars potentially harboring multiple planetary companions (assuming negligible planet-planet interactions). We tested multiple implementations using single precision, double precision, pairs of single precision, and mixed precision arithmetic. We find that the vast majority of computations can be performed using single precision arithmetic, with selective use of compensated summation for increased precision. However, standard single precision is not adequate for calculating the mean anomaly from the time of observation and orbital period when evaluating the goodness-of-fit for real planetary systems and observational data sets. Using all double precision, our GPU code outperforms a similar code using a modern CPU by a factor of over 60. Using mixed-precision, our GPU code provides a speed-up factor of over 600, when evaluating N_sys > 1024 models planetary systems each containing N_pl = 4 planets and assuming N_obs = 256 observations of each system. We conclude that modern GPUs also offer a powerful tool for repeatedly evaluating Kepler's equation and a goodness-of-fit statistic for orbital models when presented with a large parameter space.Comment: 19 pages, to appear in New Astronom

    Stitching IC Images

    Get PDF
    Image stitching software is used in many areas such as photogrammetry, biomedical imaging, and even amateur digital photography. However, these algorithms require relatively large image overlap, and for this reason they cannot be used to stitch the integrated circuit (IC) images, whose overlap is typically less than 60 pixels for a 4096 by 4096 pixel image. In this paper, we begin by using algorithmic graph theory to study optimal patterns for adding IC images one at a time to a grid. In the remaining sections we study ways of stitching all the images simultaneously using different optimisation approaches: least squares methods, simulated annealing, and nonlinear programming

    ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R

    Get PDF
    We introduce the C++ application and R package ranger. The software is a fast implementation of random forests for high dimensional data. Ensembles of classification, regression and survival trees are supported. We describe the implementation, provide examples, validate the package with a reference implementation, and compare runtime and memory usage with other implementations. The new software proves to scale best with the number of features, samples, trees, and features tried for splitting. Finally, we show that ranger is the fastest and most memory efficient implementation of random forests to analyze data on the scale of a genome-wide association study
    • …
    corecore