558 research outputs found

    Adapting Image Super-Resolution State-of-the-arts and Learning Multi-model Ensemble for Video Super-Resolution

    Full text link
    Recently, image super-resolution has been widely studied and achieved significant progress by leveraging the power of deep convolutional neural networks. However, there has been limited advancement in video super-resolution (VSR) due to the complex temporal patterns in videos. In this paper, we investigate how to adapt state-of-the-art methods of image super-resolution for video super-resolution. The proposed adapting method is straightforward. The information among successive frames is well exploited, while the overhead on the original image super-resolution method is negligible. Furthermore, we propose a learning-based method to ensemble the outputs from multiple super-resolution models. Our methods show superior performance and rank second in the NTIRE2019 Video Super-Resolution Challenge Track 1

    RepGN:Object Detection with Relational Proposal Graph Network

    Full text link
    Region based object detectors achieve the state-of-the-art performance, but few consider to model the relation of proposals. In this paper, we explore the idea of modeling the relationships among the proposals for object detection from the graph learning perspective. Specifically, we present relational proposal graph network (RepGN) which is defined on object proposals and the semantic and spatial relation modeled as the edge. By integrating our RepGN module into object detectors, the relation and context constraints will be introduced to the feature extraction of regions and bounding boxes regression and classification. Besides, we propose a novel graph-cut based pooling layer for hierarchical coarsening of the graph, which empowers the RepGN module to exploit the inter-regional correlation and scene description in a hierarchical manner. We perform extensive experiments on COCO object detection dataset and show promising results

    CompactNet: Platform-Aware Automatic Optimization for Convolutional Neural Networks

    Full text link
    Convolutional Neural Network (CNN) based Deep Learning (DL) has achieved great progress in many real-life applications. Meanwhile, due to the complex model structures against strict latency and memory restriction, the implementation of CNN models on the resource-limited platforms is becoming more challenging. This work proposes a solution, called CompactNet\footnote{Project URL: \url{https://github.com/CompactNet/CompactNet}}, which automatically optimizes a pre-trained CNN model on a specific resource-limited platform given a specific target of inference speedup. Guided by a simulator of the target platform, CompactNet progressively trims a pre-trained network by removing certain redundant filters until the target speedup is reached and generates an optimal platform-specific model while maintaining the accuracy. We evaluate our work on two platforms of a mobile ARM CPU and a machine learning accelerator NPU (Cambricon-1A ISA) on a Huawei Mate10 smartphone. For the state-of-the-art slim CNN model made for the embedded platform, MobileNetV2, CompactNet achieves up to a 1.8x kernel computation speedup with equal or even higher accuracy for image classification tasks on the Cifar-10 dataset

    Multi-Scale Dual-Branch Fully Convolutional Network for Hand Parsing

    Full text link
    Recently, fully convolutional neural networks (FCNs) have shown significant performance in image parsing, including scene parsing and object parsing. Different from generic object parsing tasks, hand parsing is more challenging due to small size, complex structure, heavy self-occlusion and ambiguous texture problems. In this paper, we propose a novel parsing framework, Multi-Scale Dual-Branch Fully Convolutional Network (MSDB-FCN), for hand parsing tasks. Our network employs a Dual-Branch architecture to extract features of hand area, paying attention on the hand itself. These features are used to generate multi-scale features with pyramid pooling strategy. In order to better encode multi-scale features, we design a Deconvolution and Bilinear Interpolation Block (DB-Block) for upsampling and merging the features of different scales. To address data imbalance, which is a common problem in many computer vision tasks as well as hand parsing tasks, we propose a generalization of Focal Loss, namely Multi-Class Balanced Focal Loss, to tackle data imbalance in multi-class classification. Extensive experiments on RHD-PARSING dataset demonstrate that our MSDB-FCN has achieved the state-of-the-art performance for hand parsing

    Learning Spatiotemporal Features via Video and Text Pair Discrimination

    Full text link
    Current video representations heavily rely on learning from manually annotated video datasets which are time-consuming and expensive to acquire. We observe videos are naturally accompanied by abundant text information such as YouTube titles and Instagram captions. In this paper, we leverage this visual-textual connection to learn spatiotemporal features in an efficient weakly-supervised manner. We present a general cross-modal pair discrimination (CPD) framework to capture this correlation between a video and its associated text. Specifically, we adopt noise-contrastive estimation to tackle the computational issue imposed by the huge amount of pair instance classes and design a practical curriculum learning strategy. We train our CPD models on both standard video dataset (Kinetics-210k) and uncurated web video dataset (Instagram-300k) to demonstrate its effectiveness. Without further fine-tuning, the learnt models obtain competitive results for action classification on Kinetics under the linear classification protocol. Moreover, our visual model provides an effective initialization to fine-tune on downstream tasks, which yields a remarkable performance gain for action recognition on UCF101 and HMDB51, compared with the existing state-of-the-art self-supervised training methods. In addition, our CPD model yields a new state of the art for zero-shot action recognition on UCF101 by directly utilizing the learnt visual-textual embeddings. The code will be made available at https://github.com/MCG-NJU/CPD-Video.Comment: Technical Repor

    Progressive Stochastic Binarization of Deep Networks

    Full text link
    A plethora of recent research has focused on improving the memory footprint and inference speed of deep networks by reducing the complexity of (i) numerical representations (for example, by deterministic or stochastic quantization) and (ii) arithmetic operations (for example, by binarization of weights). We propose a stochastic binarization scheme for deep networks that allows for efficient inference on hardware by restricting itself to additions of small integers and fixed shifts. Unlike previous approaches, the underlying randomized approximation is progressive, thus permitting an adaptive control of the accuracy of each operation at run-time. In a low-precision setting, we match the accuracy of previous binarized approaches. Our representation is unbiased - it approaches continuous computation with increasing sample size. In a high-precision regime, the computational costs are competitive with previous quantization schemes. Progressive stochastic binarization also permits localized, dynamic accuracy control within a single network, thereby providing a new tool for adaptively focusing computational attention. We evaluate our method on networks of various architectures, already pretrained on ImageNet. With representational costs comparable to previous schemes, we obtain accuracies close to the original floating point implementation. This includes pruned networks, except the known special case of certain types of separated convolutions. By focusing computational attention using progressive sampling, we reduce inference costs on ImageNet further by a factor of up to 33% (before network pruning)

    Learning Gaussian Instance Segmentation in Point Clouds

    Full text link
    This paper presents a novel method for instance segmentation of 3D point clouds. The proposed method is called Gaussian Instance Center Network (GICN), which can approximate the distributions of instance centers scattered in the whole scene as Gaussian center heatmaps. Based on the predicted heatmaps, a small number of center candidates can be easily selected for the subsequent predictions with efficiency, including i) predicting the instance size of each center to decide a range for extracting features, ii) generating bounding boxes for centers, and iii) producing the final instance masks. GICN is a single-stage, anchor-free, and end-to-end architecture that is easy to train and efficient to perform inference. Benefited from the center-dictated mechanism with adaptive instance size selection, our method achieves state-of-the-art performance in the task of 3D instance segmentation on ScanNet and S3DIS datasets

    Towards More Efficient and Effective Inference: The Joint Decision of Multi-Participants

    Full text link
    Existing approaches to improve the performances of convolutional neural networks by optimizing the local architectures or deepening the networks tend to increase the size of models significantly. In order to deploy and apply the neural networks to edge devices which are in great demand, reducing the scale of networks are quite crucial. However, It is easy to degrade the performance of image processing by compressing the networks. In this paper, we propose a method which is suitable for edge devices while improving the efficiency and effectiveness of inference. The joint decision of multi-participants, mainly contain multi-layers and multi-networks, can achieve higher classification accuracy (0.26% on CIFAR-10 and 4.49% on CIFAR-100 at most) with similar total number of parameters for classical convolutional neural networks

    Translate the Facial Regions You Like Using Region-Wise Normalization

    Full text link
    Though GAN (Generative Adversarial Networks) based technique has greatly advanced the performance of image synthesis and face translation, only few works available in literature provide region based style encoding and translation. We propose in this paper a region-wise normalization framework, for region level face translation. While per-region style is encoded using available approach, we build a so called RIN (region-wise normalization) block to individually inject the styles into per-region feature maps and then fuse them for following convolution and upsampling. Both shape and texture of different regions can thus be translated to various target styles. A region matching loss has also been proposed to significantly reduce the inference between regions during the translation process. Extensive experiments on three publicly available datasets, i.e. Morph, RaFD and CelebAMask-HQ, suggest that our approach demonstrate a large improvement over state-of-the-art methods like StarGAN, SEAN and FUNIT. Our approach has further advantages in precise control of the regions to be translated. As a result, region level expression changes and step by step make up can be achieved. The video demo is available at https://youtu.be/ceRqsbzXAfk.Comment: 13 pages, 13 figure

    Adaptive Exploration for Unsupervised Person Re-Identification

    Full text link
    Due to domain bias, directly deploying a deep person re-identification (re-ID) model trained on one dataset often achieves considerably poor accuracy on another dataset. In this paper, we propose an Adaptive Exploration (AE) method to address the domain-shift problem for re-ID in an unsupervised manner. Specifically, in the target domain, the re-ID model is inducted to 1) maximize distances between all person images and 2) minimize distances between similar person images. In the first case, by treating each person image as an individual class, a non-parametric classifier with a feature memory is exploited to encourage person images to move far away from each other. In the second case, according to a similarity threshold, our method adaptively selects neighborhoods for each person image in the feature space. By treating these similar person images as the same class, the non-parametric classifier forces them to stay closer. However, a problem of the adaptive selection is that, when an image has too many neighborhoods, it is more likely to attract other images as its neighborhoods. As a result, a minority of images may select a large number of neighborhoods while a majority of images have only a few neighborhoods. To address this issue, we additionally integrate a balance strategy into the adaptive selection. We evaluate our methods with two protocols. The first one is called "target-only re-ID", in which only the unlabeled target data is used for training. The second one is called "domain adaptive re-ID", in which both the source data and the target data are used during training. Experimental results on large-scale re-ID datasets demonstrate the effectiveness of our method. Our code has been released at https://github.com/dyh127/Adaptive-Exploration-for-Unsupervised-Person-Re-Identification.Comment: ACM Transactions on Multimedia Computing, Communications and Application (TOMCCAP
    • …
    corecore