9 research outputs found

    CV-QKD with Gaussian and non-Gaussian Entangled States over Satellite-based Channels

    Full text link
    In this work we investigate the effectiveness of continuous-variable (CV) entangled states, transferred through high-loss atmospheric channels, as a means of viable quantum key distribution (QKD) between terrestrial stations and low-Earth orbit (LEO) satellites. In particular, we investigate the role played by the Gaussian CV states as compared to non-Gaussian states. We find that beam-wandering induced atmospheric losses lead to QKD performance levels that are in general quite different from those found in fixed-attenuation channels. For example, circumstances can be found where no QKD is viable at some fixed loss in fiber but is viable at the same mean loss in fading channels. We also find that, in some circumstances, the QKD relative performance of Gaussian and non-Gaussian states can in atmospheric channels be the reverse of that found in fixed-attenuation channels. These findings show that the nature of the atmospheric channel can have a large impact on the QKD performance. Our results should prove useful for emerging global quantum communications that use LEO satellites as communication relays.Comment: 7 pages, 5 figure

    Quantum Entanglement Distribution in Next-Generation Wireless Communication Systems

    Full text link
    In this work we analyze the distribution of quantum entanglement over communication channels in the millimeter-wave regime. The motivation for such a study is the possibility for next-generation wireless networks (beyond 5G) to accommodate such a distribution directly - without the need to integrate additional optical communication hardware into the transceivers. Future wireless communication systems are bound to require some level of quantum communications capability. We find that direct quantum-entanglement distribution in the millimeter-wave regime is indeed possible, but that its implementation will be very demanding from both a system-design perspective and a channel-requirement perspective.Comment: 6 pages, 4 figure

    Photonic Engineering for CV-QKD over Earth-Satellite Channels

    Full text link
    Quantum Key Distribution (QKD) via satellite offers up the possibility of unconditionally secure communications on a global scale. Increasing the secret key rate in such systems, via photonic engineering at the source, is a topic of much ongoing research. In this work we investigate the use of photon-added states and photon-subtracted states, derived from two mode squeezed vacuum states, as examples of such photonic engineering. Specifically, we determine which engineered-photonic state provides for better QKD performance when implemented over channels connecting terrestrial receivers with Low-Earth-Orbit satellites. We quantify the impact the number of photons that are added or subtracted has, and highlight the role played by the adopted model for atmospheric turbulence and loss on the predicted key rates. Our results are presented in terms of the complexity of deployment used, with the simplest deployments ignoring any estimate of the channel, and the more sophisticated deployments involving a feedback loop that is used to optimize the key rate for each channel estimation. The optimal quantum state is identified for each deployment scenario investigated.Comment: Updated reference lis

    Inter-satellite Quantum Key Distribution at Terahertz Frequencies

    Full text link
    Terahertz (THz) communication is a topic of much research in the context of high-capacity next-generation wireless networks. Quantum communication is also a topic of intensive research, most recently in the context of space-based deployments. In this work we explore the use of THz frequencies as a means to achieve quantum communication within a constellation of micro-satellites in Low-Earth-Orbit (LEO). Quantum communication between the micro-satellite constellation and high-altitude terrestrial stations is also investigated. Our work demonstrates that THz quantum entanglement distribution and THz quantum key distribution are viable deployment options in the micro-satellite context. We discuss how such deployment opens up the possibility for simpler integration of global quantum and wireless networks. The possibility of using THz frequencies for quantum-radar applications in the context of LEO deployments is briefly discussed.Comment: 7 pages, 6 figure
    corecore