261,678 research outputs found
Modification of electronic surface states by graphene islands on Cu(111)
We present a study of graphene/substrate interactions on UHV-grown graphene
islands with minimal surface contamination using \emph{in situ} low-temperature
scanning tunneling microscopy (STM). We compare the physical and electronic
structure of the sample surface with atomic spatial resolution on graphene
islands versus regions of bare Cu(111) substrate. We find that the Rydberg-like
series of image potential states is shifted toward lower energy over the
graphene islands relative to Cu(111), indicating a decrease in the local work
function, and the resonances have a much smaller linewidth, indicating reduced
coupling to the bulk. In addition, we show the dispersion of the occupied
Cu(111) Shockley surface state is influenced by the graphene layer, and both
the band edge and effective mass are shifted relative to bare Cu(111).Comment: 12 pages, 3 figure
Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate
Copper foil is the most promising catalyst for the synthesis of large-area, high-quality monolayer graphene. Experimentally, it has been found that the Cu substrate is semi-molten at graphene growth temperatures. In this study, based on a self-developed C-Cu empirical potential and density functional theory (DFT) methods, we performed systematic molecular dynamics simulations to explore the stability of graphene nanostructures, i.e., carbon nanoclusters and graphene nanoribbons, on semi-molten Cu substrates. Many atomic details observed in the classical MD simulations agree well with those seen in DFT-MD simulations, confirming the high accuracy of the C-Cu potential. Depending on the size of the graphene island, two different sunken-modes are observed: (i) graphene island sinks into the first layer of the metal substrate and (ii) many metal atoms surround the graphene island. Further study reveals that the sinking graphene leads to the unidirectional alignment and seamless stitching of the graphene islands, which explains the growth of large single-crystal graphene on Cu foil. This study deepens our physical insights into the CVD growth of graphene on semi-molten Cu substrate with multiple experimental mysteries well explained and provides theoretic references for the controlled synthesis of large-area single-crystalline monolayer graphene
Simple model for scanning tunneling spectroscopy of noble metal surfaces with adsorbed Kondo impurities
A simple model is introduced to describe conductance measurements between a
scanning tunneling microscope (STM) tip and a noble metal surface with adsorbed
transition metal atoms which display the Kondo effect. The model assumes a
realistic parameterization of the potential created by the surface and a
d3z2-r2 orbital for the description of the adsorbate. Fano lineshapes
associated with the Kondo resonance are found to be sensitive to details of the
adsorbate-substrate interaction. For instance, bringing the adsorbate closer to
the surface leads to more asymmetric lineshapes while their dependence on the
tip distance is weak. We find that it is important to use a realistic surface
potential, to properly include the tunnelling matrix elements to the tip and to
use substrate states which are orthogonal to the adsorbate and tip states. An
application of our model to Co adsorbed on Cu explains the difference in the
lineshapes observed between Cu(100) and Cu(111) surfaces.Comment: 11 pages, 8 eps figure
Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces
The Kondo temperature of single Co adatoms on monolayers of Ag on Cu
and Au(111) is determined using Scanning Tunneling Spectroscopy. of Co on
a single monolayer of Ag on either substrate is essentially the same as that of
Co on a homogenous Ag(111) crystal. This gives strong evidence that the
interaction of surface Kondo impurities with the substrate is very local in
nature. By comparing found for Co on Cu, Ag, and Au (111)-surfaces we
show that the energy scale of the many-electron Kondo state is insensitive to
the properties of surface states and to the energetic position of the projected
bulk band edges.Comment: 4 pages, 3 figure
Structural and electronic properties of hybrid graphene and boron nitride nanostructures on Cu
Recently, two-dimensional nanostructures consisting of alternating graphene
and boron nitride (BN) domains have been synthesized. These systems possess
interesting electronic and mechanical properties, with potential applications
in electronics and optical devices. Here, we perform a first-principles
investigation of models of BN-C hybrid monolayers and nanoribbons deposited on
the Cu(111) surface, a substrate used for their growth in said experiments. For
the sake of comparison, we also consider BN and BC2N nanostructures. We show
that BN and BC2N monolayers bind weakly to Cu(111), whereas monolayers with
alternating domains interact strongly with the substrate at the B-C interface,
due to the presence of localized interface states. This binding leads to a
deformation of the monolayers and sizable n-doping. Nanoribbons exhibit a
similar behaviour. Furthermore, they also interact significantly with the
substrate at the edge, even in the case of passivated edges. These findings
suggest a route to tune the band gap and doping level of BN-C hybrid models
based on the interplay between nanostructuring and substrate-induced effects.Comment: 22 pages, 8 figure
Quantum size effects in Pb islands on Cu(111): Electronic-structure calculations
The appearance of "magic" heights of Pb islands grown on Cu(111) is studied
by self-consistent electronic structure calculations. The Cu(111) substrate is
modeled with a one-dimensional pseudopotential reproducing the essential
features, i.e. the band gap and the work function, of the Cu band structure in
the [111] direction. Pb islands are presented as stabilized jellium overlayers.
The experimental eigenenergies of the quantum well states confined in the Pb
overlayer are well reproduced. The total energy oscillates as a continuous
function of the overlayer thickness reflecting the electronic shell structure.
The energies for completed Pb monolayers show a modulated oscillatory pattern
reminiscent of the super-shell structure of clusters and nanowires. The energy
minima correlate remarkably well with the measured most probable heights of Pb
islands. The proper modeling of the substrate is crucial to set the
quantitative agreement.Comment: 4 pages, 4 figures. Submitte
- …
