3,124 research outputs found
Validation of CTmax Protocols Using Cased and Uncased \u3ci\u3ePycnopsyche Guttifer\u3c/i\u3e (Trichoptera: Limnephilidae) Larvae
The critical thermal maximum (CTmax) of a northern Lower Michigan population of Pycnopsyche guttifer was determined using four rates of temperature increase (0.10, 0.33, 0.50, and 0.70oC per minute), and two case states (intact and removed). Across all temperature increase rates, larvae removed from their cases had a significantly lower mean CTmax than those remaining in their cases, suggesting that the case can increase the larva’s ability to tolerate thermal stress, possibly due to respiratory advantages. Regardless of case state, mean CTmax was significantly lower at the 0.10oC per minute increase rate than the other three rates, likely due to increased exposure time. Our results indicate that CTmax studies done using 0.33–0.70oC per minute increase protocols would be comparable with each other, but not with studies using an increase rate of 0.10oC per minute
Thermal tolerance, climatic variability and latitude
The greater latitudinal extents of occurrence of species towards higher latitudes has been attributed to the broadening of physiological tolerances with latitude as a result of increases in climatic variation. While there is some support for such patterns in climate, the physiological tolerances of species across large latitudinal gradients have seldom been assessed. Here we report findings for insects based on published upper and lower lethal temperature data. The upper thermal limits show little geographical variation. In contrast, the lower bounds of supercooling points and lower lethal temperatures do indeed decline with latitude. However, this is not the case for the upper bounds, leading to an increase in the variation in lower lethal limits with latitude. These results provide some support for the physiological tolerance assumption associated with Rapoport's rule, but highlight the need for coupled data on species tolerances and range size
Ontogeny influences sensitivity to climate change stressors in an endangered fish.
Coastal ecosystems are among the most human-impacted habitats globally, and their management is often critically linked to recovery of declining native species. In the San Francisco Estuary, the Delta Smelt (Hypomesus transpacificus) is an endemic, endangered fish strongly tied to Californian conservation planning. The complex life history of Delta Smelt combined with dynamic seasonal and spatial abiotic conditions result in dissimilar environments experienced among ontogenetic stages, which may yield stage-specific susceptibility to abiotic stressors. Climate change is forecasted to increase San Francisco Estuary water temperature and salinity; therefore, understanding the influences of ontogeny and phenotypic plasticity on tolerance to these critical environmental parameters is particularly important for Delta Smelt and other San Francisco Estuary fishes. We assessed thermal and salinity limits in several ontogenetic stages and acclimation states of Delta Smelt, and paired these data with environmental data to evaluate sensitivity to climate-change stressors. Thermal tolerance decreased among successive stages, with larval fish exhibiting the highest tolerance and post-spawning adults having the lowest. Delta Smelt had limited capacity to increase tolerance through thermal acclimation, and comparisons with field temperature data revealed that juvenile tolerance limits are the closest to current environmental conditions, which may make this stage especially susceptible to future climate warming. Maximal water temperatures observed in situ exceeded tolerance limits of juveniles and adults. Although these temperature events are currently rare, if they increase in frequency as predicted, it could result in habitat loss at these locations despite other favourable conditions for Delta Smelt. In contrast, Delta Smelt tolerated salinities spanning the range of expected environmental conditions for each ontogenetic stage, but salinity did impact survival in juvenile and adult stages in exposures over acute time scales. Our results underscore the importance of considering ontogeny and phenotypic plasticity in assessing the impacts of climate change, particularly for species adapted to spatially and temporally heterogeneous environments
Recommended from our members
Low temperatures impact species distributions of jumping spiders across a desert elevational cline.
Temperature is known to influence many aspects of organisms and is frequently linked to geographical species distributions. Despite the importance of a broad understanding of an animal's thermal biology, few studies incorporate more than one metric of thermal biology. Here we examined an elevational assemblage of Habronattus jumping spiders to measure different aspects of their thermal biology including thermal limits (CTmin, CTmax), thermal preference, V̇CO2 as proxy for metabolic rate, locomotor behavior and warming tolerance. We used these data to test whether thermal biology helped explain how species were distributed across elevation. Habronattus had high CTmax values, which did not differ among species across the elevational gradient. The highest-elevation species had a lower CTmin than any other species. All species had a strong thermal preference around 37 °C. With respect to performance, one of the middle elevation species was significantly less temperature-sensitive in metabolic rate. Differences between species with respect to locomotion (jump distance) were likely driven by differences in mass, with no differences in thermal performance across elevation. We suggest that Habronattus distributions follow Brett's rule, a rule that predicts more geographical variation in cold tolerance than heat. Additionally, we suggest that physiological tolerances interact with biotic factors, particularly those related to courtship and mate choice to influence species distributions. Habronattus also had very high warming tolerance values (> 20 °C, on average). Taken together, these data suggest that Habronattus are resilient in the face of climate-change related shifts in temperature
Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal Nacellid limpets to climate change
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions
Solving Assembly Line Balancing Problems by Combining IP and CP
Assembly line balancing problems consist in partitioning the work necessary
to assemble a number of products among different stations of an assembly line.
We present a hybrid approach for solving such problems, which combines
constraint programming and integer programming.Comment: 10 pages, Sixth Annual Workshop of the ERCIM Working Group on
Constraints, Prague, June 200
Radial asymptotics of Lemaitre-Tolman-Bondi dust models
We examine the radial asymptotic behavior of spherically symmetric
Lemaitre-Tolman-Bondi dust models by looking at their covariant scalars along
radial rays, which are spacelike geodesics parametrized by proper length
, orthogonal to the 4-velocity and to the orbits of SO(3). By introducing
quasi-local scalars defined as integral functions along the rays, we obtain a
complete and covariant representation of the models, leading to an initial
value parametrization in which all scalars can be given by scaling laws
depending on two metric scale factors and two basic initial value functions.
Considering regular "open" LTB models whose space slices allow for a diverging
, we provide the conditions on the radial coordinate so that its
asymptotic limit corresponds to the limit as . The "asymptotic
state" is then defined as this limit, together with asymptotic series expansion
around it, evaluated for all metric functions, covariant scalars (local and
quasi-local) and their fluctuations. By looking at different sets of initial
conditions, we examine and classify the asymptotic states of parabolic,
hyperbolic and open elliptic models admitting a symmetry center. We show that
in the radial direction the models can be asymptotic to any one of the
following spacetimes: FLRW dust cosmologies with zero or negative spatial
curvature, sections of Minkowski flat space (including Milne's space), sections
of the Schwarzschild--Kruskal manifold or self--similar dust solutions.Comment: 44 pages (including a long appendix), 3 figures, IOP LaTeX style.
Typos corrected and an important reference added. Accepted for publication in
General Relativity and Gravitatio
- …
