2 research outputs found

    Multitarget tracking and terrain-aided navigation using square-root consider filters

    Get PDF
    Filtering is a term used to describe methods that estimate the values of partially observed states, such as the position, velocity, and attitude of a vehicle, using current observations that are corrupted due to various sources, such as measurement noise, transmission dropouts, and spurious information. The study of filtering has been an active focus of research for decades, and the resulting filters have been the cornerstone of many of humankind\u27s greatest technological achievements. However, these achievements are enabled principally by the use of specialized techniques that seek to, in some way, combat the negative impacts that processor roundoff and truncation error have on filtering. Two of these specialized techniques are known as square-root filters and consider filters. The former alleviates the fragility induced from estimating error covariance matrices by, instead, managing a factorized representation of that matrix, known as a square-root factor. The latter chooses to account for the statistical impacts a troublesome system parameter has on the overall state estimate without directly estimating it, and the result is a substantial reduction in numerical sensitivity to errors in that parameter. While both of these techniques have found widespread use in practical application, they have never been unified in a common square-root consider framework. Furthermore, consider filters are historically rooted to standard, vector-valued estimation techniques, and they have yet to be generalized to the emerging, set-valued estimation tools for multitarget tracking. In this dissertation, formulae for the square-root consider filter are derived, and the result is extended to finite set statistics-based multitarget tracking tools. These results are used to propose a terrain-aided navigation concept wherein data regarding a vehicle\u27s environment is used to improve its state estimate, and square-root consider techniques provide the numerical stability necessary for an onboard navigation application. The newly developed square-root consider techniques are shown to be much more stable than standard formulations, and the terrain-aided navigation concept is applied to a lunar landing scenario to illustrate its applicability to navigating in challenging environments --Abstract, page iii

    Optical based statistical space objects tracking for catalogue maintenance

    Get PDF
    The number of space objects has grown substantially in the past decades due to new launches, regular mission activities, and breakup events. This has significantly affected the space environment and the development of the space industry. To ensure safe operation of space assets, Space Situational Awareness (SSA) has attracted considerable attention in recent years. One primary strategy in SSA is to establish and maintain a Space Object Catalogue (SOC) to provide timely updated data for SSA applications, e.g., conjunction analysis, collision avoidance manoeuvring. This thesis investigates three techniques for SOC maintenance, namely the tracklet association method for initial orbit determination, the multi-target tracking method for the refinement of orbital state estimation, and multi-sensor tasking method for the optimisation of sensor resources. Generally speaking, due to the limited number of optical sensors used to track the large population of space objects, the obtained observational arcs for many targets are very short. Such short arcs, which contain a small number of angular observations, are referred as tracklets. Given such limited data, typical orbit determination methods, e.g., Laplace, Gaussian, Double-R methods, may fail to produce a valid orbital solution. By contrast, tracklet association methods compare and correlate multiple tracklets across time, and following successful association, a reliable initial orbital state can be further determined for SOC maintenance. This thesis proposes an improved initial value problem optimisation method for accurate and efficient tracklet association, and a common ellipse method to distinguish false associations of tracklets from objects in the same constellation. The proposed methods are validated using real optical data collected from the Mount Stromlo Observatory, Canberra, Australia. Furthermore, another challenging task in SSA is to track multiple objects for the maintenance of a catalog. The Bayesian multi-target tracking filter addresses this issue by associating measurements to initially known or newly detected targets and simultaneously estimating the timevarying number of targets and their orbital states. In order to achieve efficient tracking of the new space objects, a novel birth model using the Boundary Value Problem (BVP) approach is proposed. The proposed BVP birth model is implemented in the Labelled Multi-Bernoulli (LMB) filter, which is an efficient multi-target tracker developed based on the Random Finite Set (RFS) theory, for improved computational efficiency of new space object tracking. Simulation results indicate that the computational efficiency of the proposed method significantly outperforms the state-of-the-art methods. Finally, as limited sensors are available for SOC maintenance, an appropriate sensor tasking scheme is essential for the optimisation of sensor resources. The optimal sensor tasking command allocates multiple sensors to take the best action and produce useful measurements for more accurate orbital state estimation. In this thesis, an analytical form is derived for the Rényi divergence of LMB RFS in which each target state density is a single Gaussian component. The obtained analytical Rényi divergence is formulated as a reward function for multi-sensor tasking, which improves the computational efficiency, especially for large-scale space object tracking. In addition, this thesis further investigates the benefits of using the analytical Rényi  divergence and various space-based and ground-based sensor networks for accurate tracking of objects in geosynchronous Earth orbit
    corecore