2,860 research outputs found
Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi
Background: Within the last years, numerous reports described successful application of the CRISPR nucleases Cas9 and Cpf1 for genome editing in filamentous fungi. However, still a lot of efforts are invested to develop and improve protocols for the fungus and genes of interest with respect to applicability, scalability and targeting efficiencies. These efforts are often hampered by the fact that—although many different protocols are available— one have systematically analysed and compared different CRISPR nucleases and different application procedures thereof for the efficiency of single- and multiplex-targeting approaches in the same fungus. Results: We present here data for successful genome editing in the cell factory Thermothelomyces thermophilus, formerly known as Myceliophthora thermophila, using the three different nucleases SpCas9, FnCpf1, AsCpf1 guided to four different gene targets of our interest. These included a polyketide synthase (pks4.2), an alkaline protease (alp1), a SNARE protein (snc1) and a potential transcription factor (ptf1). For all four genes, guide RNAs were developed which enabled successful single-targeting and multiplex-targeting. CRISPR nucleases were either delivered to T. thermophilus on plasmids or preassembled with in vitro transcribed gRNA to form ribonucleoproteins (RNPs). We also evaluated the efficiency of single oligonucleotides for site-directed mutagenesis. Finally, we were able to scale down the transformation protocol to microtiter plate format which generated high numbers of positive transformants and will thus pave the way for future high-throughput investigations. Conclusion: We provide here the first comprehensive analysis and evaluation of different CRISPR approaches for a filamentous fungus. All approaches followed enabled successful genome editing in T. thermophilus; however, with different success rates. In addition, we show that the success rate depends on the respective nuclease and on the targeted gene locus. We finally present a practical guidance for experimental considerations aiming to guide the reader for successful implementation of CRISPR technology for other fungi.TU Berlin, Open-Access-Mittel - 201
Recommended from our members
CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway.
With its high efficiency for site-specific genome editing and easy manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 (CAS9) system has become the most widely used gene editing technology in biomedical research. In addition, significant progress has been made for the clinical development of CRISPR/CAS9 based gene therapies of human diseases, several of which are entering clinical trials. Here we report that CAS9 protein can function as a genome mutator independent of any exogenous guide RNA (gRNA) in human cells, promoting genomic DNA double-stranded break (DSB) damage and genomic instability. CAS9 interacts with the KU86 subunit of the DNA-dependent protein kinase (DNA-PK) complex and disrupts the interaction between KU86 and its kinase subunit, leading to defective DNA-PK-dependent repair of DNA DSB damage via non-homologous end-joining (NHEJ) pathway. XCAS9 is a CAS9 variant with potentially higher fidelity and broader compatibility, and dCAS9 is a CAS9 variant without nuclease activity. We show that XCAS9 and dCAS9 also interact with KU86 and disrupt DNA DSB repair. Considering the critical roles of DNA-PK in maintaining genomic stability and the pleiotropic impact of DNA DSB damage responses on cellular proliferation and survival, our findings caution the interpretation of data involving CRISPR/CAS9-based gene editing and raise serious safety concerns of CRISPR/CAS9 system in clinical application
Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo.
Engineering of the Cpf1 crRNA has the potential to enhance its gene editing efficiency and non-viral delivery to cells. Here, we demonstrate that extending the length of its crRNA at the 5 end can enhance the gene editing efficiency of Cpf1 both in cells and in vivo. Extending the 5 end of the crRNA enhances the gene editing efficiency of the Cpf1 RNP to induce non-homologous end-joining and homology-directed repair using electroporation in cells. Additionally, chemical modifications on the extended 5 end of the crRNA result in enhanced serum stability. Also, extending the 5 end of the crRNA by 59 nucleotides increases the delivery efficiency of Cpf1 RNP in cells and in vivo cationic delivery vehicles including polymer nanoparticle. Thus, 5 extension and chemical modification of the Cpf1 crRNA is an effective method for enhancing the gene editing efficiency of Cpf1 and its delivery in vivo
dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression.
Distinct epigenomic profiles of histone marks have been associated with gene expression, but questions regarding the causal relationship remain. Here we investigated the activity of a broad collection of genomically targeted epigenetic regulators that could write epigenetic marks associated with a repressed chromatin state (G9A, SUV39H1, Krüppel-associated box (KRAB), DNMT3A as well as the first targetable versions of Ezh2 and Friend of GATA-1 (FOG1)). dCas9 fusions produced target gene repression over a range of 0- to 10-fold that varied by locus and cell type. dCpf1 fusions were unable to repress gene expression. The most persistent gene repression required the action of several effector domains; however, KRAB-dCas9 did not contribute to persistence in contrast to previous reports. A 'direct tethering' strategy attaching the Ezh2 methyltransferase enzyme to dCas9, as well as a 'recruitment' strategy attaching the N-terminal 45 residues of FOG1 to dCas9 to recruit the endogenous nucleosome remodeling and deacetylase complex, were both successful in targeted deposition of H3K27me3. Surprisingly, however, repression was not correlated with deposition of either H3K9me3 or H3K27me3. Our results suggest that so-called repressive histone modifications are not sufficient for gene repression. The easily programmable dCas9 toolkit allowed precise control of epigenetic information and dissection of the relationship between the epigenome and gene regulation
Simultaneous precise editing of multiple genes in human cells
Abstract. When double-strand breaks are introduced in a genome by CRISPR they are repaired either by non-homologous end joining (NHEJ), which often results i
Beyond seek and destroy: How to generate allelic series using genome editing tools
Genome editing tools have greatly facilitated the functional analysis of genes of interest by targeted mutagenesis. Many usable genome editing tools, including different site-specific nucleases and editor databases that allow single-nucleotide polymorphisms (SNPs) to be introduced at a given site, are now available. These tools can be used to generate high allelic diversity at a given locus to facilitate gene function studies, including examining the role of a specific protein domain or a single amino acid. We compared the effects, efficiencies and mutation types generated by our LbCPF1, SpCAS9 and base editor (BECAS9) constructs for the OsCAO1 gene. SpCAS9 and LbCPF1 have similar efficiencies in generating mutations but differ in the types of mutations induced, with the majority of changes being single-nucleotide insertions and short deletions for SpCAS9 and LbCPF1, respectively. The proportions of heterozygotes also differed, representing a majority in our LbCPF1, while with SpCAS9, we obtained a large number of biallelic mutants. Finally, we demonstrated that it is possible to specifically introduce stop codons using the BECAS9 with an acceptable efficiency of approximately 20%. Based on these results, a rational choice among these three alternatives may be made depending on the type of mutation that one wishes to introduce, the three systems being complementary. SpCAS9 remains the best choice to generate KO mutations in primary transformants, while if the desired gene mutation interferes with regeneration or viability, the use of our LbCPF1 construction will be preferred, because it produces mainly heterozygotes. LbCPF1 has been described in other studies as being as effective as SpCAS9 in generating homozygous and biallelic mutations. It will remain to be clarified in the future, whether the different LbCFP1 constructions have different efficiencies and determine the origin of these differences. Finally, if one wishes to specifically introduce stop codons, BECAS9 is a viable and efficient alternative, although it has a lower efficiency than SpCAS9 and LbCPF1 for creating KO mutations
BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks
Precisely measuring the location and frequency of DNA double-strand breaks (DSBs) along the genome is instrumental to understanding genomic fragility, but current methods are limited in versatility, sensitivity or practicality. Here we present Breaks Labeling In Situ and Sequencing (BLISS), featuring the following: (1) direct labelling of DSBs in fixed cells or tissue sections on a solid surface; (2) low-input requirement by linear amplification of tagged DSBs by in vitro transcription; (3) quantification of DSBs through unique molecular identifiers; and (4) easy scalability and multiplexing. We apply BLISS to profile endogenous and exogenous DSBs in low-input samples of cancer cells, embryonic stem cells and liver tissue. We demonstrate the sensitivity of BLISS by assessing the genome-wide off-target activity of two CRISPR-associated RNA-guided endonucleases, Cas9 and Cpf1, observing that Cpf1 has higher specificity than Cas9. Our results establish BLISS as a versatile, sensitive and efficient method for genome-wide DSB mapping in many applications.National Institute of General Medical Sciences (U.S.) (Grant T32GM007753)National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049
Advances in biotechnology: genomics and genome editing
Genomics, the study of genes, their functions and related techniques has become a crucial science for developing understanding of life processes and how they evolve. Since the advent of the human genome project, huge strides have been made in developing understanding of DNA and RNA sequence information and how it can be put to good use in the biotechnology sector. Newly derived sequencing and bioinformatics tools have added to the torrent of new insights gained, so that 'sequence once and query often' type DNA apps are now becoming reality. Genome editing, using tools such as CRISPR/Cas9 nuclease or Cpf1 nuclease, provide rapid methods for inserting, deleting or modifying DNA sequences in highly precise ways, in virtually any animal, plant or microbial system. Recent international discussions have considered human germline gene editing, amongst other aspects of this technology. Whether or not gene edited plants will be considered as genetically modified remains an important question. This will determine the regulatory processes adopted by different groups of nations and applicability to feeding the world's ever growing population. Questions surrounding the intellectual property rights associated with gene editing must also be resolved. Mitochondrial replacement therapy leading to '3-Parent Babies' has been successfully carried out in Mexico, by an international team, to correct mother to child mitochondrial disease transmission. The UK has become the first country to legally allow 'cautious use' of mitochondrial donation in treatment. Genomics and genome editing will continue to advance what can be achieved technically, whilst society determines whether or not what can be done should be applied
Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector complexes, and Class 2, with single protein effectors. Currently, only two Class 2 effectors, Cas9 and Cpf1, are known. We describe here three distinct Class 2 CRISPR-Cas systems. The effectors of two of the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease domains distantly related to Cpf1. The third system, C2c2, contains an effector with two predicted HEPN RNase domains. Whereas production of mature CRISPR RNA (crRNA) by C2c1 depends on tracrRNA, C2c2 crRNA maturation is tracrRNA independent. We found that C2c1 systems can mediate DNA interference in a 5'-PAM-dependent fashion analogous to Cpf1. However, unlike Cpf1, which is a single-RNA-guided nuclease, C2c1 depends on both crRNA and tracrRNA for DNA cleavage. Finally, comparative analysis indicates that Class 2 CRISPR-Cas systems evolved on multiple occasions through recombination of Class 1 adaptation modules with effector proteins acquired from distinct mobile elements.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03)National Institutes of Health (U.S.) (Grant GM10407
- …
